Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders

. 2020 Jan ; 45 (1) : 204-214. [epub] 20191211

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31828497

Grantová podpora
CZ.01.1.02/0.0/0.0/16_084/0010317 Ministerstvo Průmyslu a Obchodu
TF03000037 Technology Agency of the Czech Republic

Odkazy

PubMed 31828497
DOI 10.1007/s11064-019-02925-y
PII: 10.1007/s11064-019-02925-y
Knihovny.cz E-zdroje

Neurodegenerative disorders present a broad group of neurological diseases and remain one of the greatest challenges and burdens to mankind. Maladies like amyotrophic lateral sclerosis, Alzheimer's disease, stroke or spinal cord injury commonly features astroglia involvement (astrogliosis) with signs of inflammation. Regenerative, paracrine and immunomodulatory properties of human mesenchymal stromal cells (hMSCs) could target the above components, thus opening new therapeutic possibilities for regenerative medicine. A special interest should be given to hMSCs derived from the umbilical cord (UC) tissue, due to their origin, properties and lack of ethical paradigms. The aim of this study was to establish standard operating and scale-up good manufacturing practice (GMP) protocols of UC-hMSCs isolation, characterization, expansion and comparison of cells' properties when harvested on T-flasks versus using a large-scale bioreactor system. Human UC-hMSCs, isolated by tissue explant culture technique from Wharton's jelly, were harvested after reaching 75% confluence and cultured using tissue culture flasks. Obtained UC-hMSCs prior/after the cryopreservation and after harvesting in a bioreactor, were fully characterized for "mesenchymness" immunomodulatory, tumorigenicity and genetic stability, senescence and cell-doubling properties, as well as gene expression features. Our study demonstrates an efficient and simple technique for large scale UC-hMSCs expansion. Harvesting of UC-hMSCs' using classic and large scale methods did not alter UC-hMSCs' senescence, genetic stability or in vitro tumorigenicity features. We observed comparable growth and immunomodulatory capacities of fresh, frozen and expanded UC-hMSCs. We found no difference in the ability to differentiate toward adipogenic, osteogenic and chondrogenic lineages between classic and large scale UC-hMSCs expansion methods. Both, methods enabled derivation of genetically stabile cells with typical mesenchymal features. Interestingly, we found significantly increased mRNA expression levels of neural growth factor (NGF) and downregulated insulin growth factor (IGF) in UC-hMSCs cultured in bioreactor, while IL4, IL6, IL8, TGFb and VEGF expression levels remained at the similar levels. A culturing of UC-hMSCs using a large-scale automated closed bioreactor expansion system under the GMP conditions does not alter basic "mesenchymal" features and quality of the cells. Our study has been designed to pave a road toward translation of basic research data known about human UC-MSCs for the future clinical testing in patients with neurological and immunocompromised disorders. An industrial manufacturing of UC-hMSCs next will undergo regulatory approval following advanced therapy medicinal products (ATMP) criteria prior to clinical application and approval to be used in patients.

Zobrazit více v PubMed

Biotechnol J. 2015 Aug;10(8):1235-47 PubMed

Biochimie. 2013 Dec;95(12):2257-70 PubMed

Biotechnol J. 2016 Aug;11(8):1048-59 PubMed

Trends Pharmacol Sci. 2009 May;30(5):260-7 PubMed

PLoS One. 2012;7(8):e43255 PubMed

J Steroid Biochem Mol Biol. 2015 Aug;152:76-83 PubMed

Cytotherapy. 2018 Apr;20(4):556-563 PubMed

J Biomed Sci. 2016 Nov 4;23(1):76 PubMed

Cell Transplant. 2017 Apr 13;26(4):647-658 PubMed

Cytotherapy. 2011 Aug;13(7):786-801 PubMed

Mol Med Rep. 2018 Dec;18(6):4969-4977 PubMed

Neurochem Res. 2017 Nov;42(11):3005-3018 PubMed

Cell Mol Life Sci. 2019 Sep;76(17):3323-3348 PubMed

Stem Cells Dev. 2018 Jan 15;27(2):65-84 PubMed

Hum Vaccin Immunother. 2016;12(1):85-96 PubMed

Biomed Res Int. 2013;2013:428726 PubMed

Int J Mol Sci. 2013 May 31;14(6):11692-712 PubMed

Reprod Biomed Online. 2012 Feb;24(2):235-46 PubMed

Alzheimers Res Ther. 2016 Jul 07;8(1):30 PubMed

Cell Transplant. 2013;22(11):1981-2000 PubMed

Cancer Gene Ther. 2007 Oct;14(10):828-35 PubMed

Cell Biol Int. 2011 Mar;35(3):221-6 PubMed

Lancet Neurol. 2015 Apr;14(4):388-405 PubMed

Cytotherapy. 2018 Jun;20(6):806-819 PubMed

Biotechnol Bioeng. 2014 Nov;111(11):2290-302 PubMed

Stem Cells. 2014 Dec;32(12):3163-72 PubMed

Methods Mol Biol. 2016;1416:389-412 PubMed

Int J Mol Med. 2017 Apr;39(4):775-782 PubMed

Behav Brain Res. 2017 Mar 1;320:291-301 PubMed

Biotechnol Prog. 2017 Sep;33(5):1358-1367 PubMed

Stem Cells Dev. 2017 Nov 15;26(22):1662-1673 PubMed

Tumour Biol. 2016 Aug;37(8):10723-9 PubMed

Transfusion. 2018 Oct;58(10):2374-2382 PubMed

Cytotherapy. 2017 Dec;19(12):1351-1382 PubMed

Tissue Eng Part B Rev. 2010 Aug;16(4):445-53 PubMed

Stem Cells Transl Med. 2019 Jun;8(6):535-547 PubMed

Trials. 2019 May 9;20(1):263 PubMed

Biomaterials. 2019 Mar;196:67-79 PubMed

Stem Cells. 2008 Mar;26(3):591-9 PubMed

Biomed Res Int. 2015;2015:430847 PubMed

Tissue Eng Part B Rev. 2014 Oct;20(5):523-44 PubMed

Tissue Eng Part B Rev. 2016 Dec;22(6):485-498 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transcription factor c-Myb: novel prognostic factor in osteosarcoma

. 2022 Apr ; 39 (2) : 375-390. [epub] 20220107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...