Creatine kinase B, a downstream effector of c-Myb, controls migration of osteosarcoma cells via regulation of N-cadherin
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06303K
Czech Science Foundation
PubMed
41345636
PubMed Central
PMC12797693
DOI
10.1186/s12935-025-04087-0
PII: 10.1186/s12935-025-04087-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: We have recently identified transcription factor c-Myb as a negative prognostic factor in osteosarcoma (OSA) patients associated with metastatic disease. Transcriptomic analysis identified creatine kinase B (CKB) as one of the most deregulated genes in OSA cell lines with depleted MYB. CKB is a component of the creatine/phosphocreatine system that plays a key role in maintaining cellular energy homeostasis and energy transport to sites with high demand. This study was therefore conducted to investigate the functional significance of CKB in OSA. METHODS: Deregulation of CKB by c-Myb in OSA cells was analyzed using gain-of-function/loss-of-function approach. Transactivation of the CKB promoter by c-Myb was assessed using a reporter assay. CRISPR/Cas9, RNAi and cyclocreatine were used to inhibit the expression/activity of CKB in OSA cells. Cell growth, colony-forming capacity, cell migration, chemosensitivity in vitro and metastatic capacity in vivo was examined. CKB protein effectors were identified using liquid chromatography-mass spectrometry (LC-MS) in data-independent acquisition-parallel accumulation serial fragmentation mode. RESULTS: CKB was validated as c-Myb target in OSA cell lines. Depletion of CKB using CRISPR/Cas9 resulted in slower migration of OSA cells in vitro and reduced metastatic capacity in immunodeficient mice. siRNA and cyclocreatine inhibited OSA cell migration as well but in this case, cell proliferation was also reduced. A total of 8474 protein groups were quantified, with 147 downregulated and 143 upregulated protein groups associated with the CKB knockout phenotype. The deregulated proteins were enriched for those associated with cell migration and motility. N-cadherin, an established regulator of cell migration, was identified as a target of CKB signaling and its role in OSA cell migration and metastasis was confirmed. CONCLUSION: c-Myb - CKB - N-cadherin axis was identified as pathway regulating OSA cell migration and metastasis.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Faculty of Informatics Masaryk University Brno Czech Republic
International Clinical Research Center St Annes University Hospital Brno Czech Republic
Masaryk Memorial Cancer Institute and Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179(2):201–17. PubMed DOI PMC
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024;23(1):192. PubMed DOI PMC
Smeland S, Bielack SS, Whelan J, Bernstein M, Hogendoorn P, Krailo MD, Gorlick R, Janeway KA, Ingleby FC, Anninga J, Antal I, Arndt C, Brown KLB, Butterfass-Bahloul T, Calaminus G, Capra M, Dhooge C, Eriksson M, Flanagan AM, Friedel G, Gebhardt MC, Gelderblom H, Goldsby R, Grier HE, Grimer R, Hawkins DS, Hecker-Nolting S, Sundby Hall K, Isakoff MS, Jovic G, Kühne T, Kager L, von Kalle T, Kabickova E, Lang S, Lau CC, Leavey PJ, Lessnick SL, Mascarenhas L, Mayer-Steinacker R, Meyers PA, Nagarajan R, Randall RL, Reichardt P, Renard M, Rechnitzer C, Schwartz CL, Strauss S, Teot L, Timmermann B, Sydes MR, Marina N. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50. PubMed DOI PMC
Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer. 2024;1879(5):189171. PubMed DOI
Říhová K, Dúcka M, Zambo IS, Vymětalová L, Šrámek M, Trčka F, Verner J, Drápela S, Fedr R, Suchánková T, Pavlatovská B, Ondroušková E, Kubelková I, Zapletalová D, Tuček Š, Múdry P, Krákorová DA, Knopfová L, Šmarda J, Souček K, Borsig L, Beneš P. Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis. 2022;39(2):375–90. PubMed DOI
Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D, Ray S, Wallimann T, Ray M. A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids. 2012;42(6):2319–30. PubMed DOI
Yan YB. Creatine kinase in cell cycle regulation and cancer. Amino Acids. 2016;48(8):1775–84. PubMed DOI
Wang Z, Hulsurkar M, Zhuo L, Xu J, Yang H, Naderinezhad S, Wang L, Zhang G, Ai N, Li L, Chang JT, Zhang S, Fazli L, Creighton CJ, Bai F, Ittmann MM, Gleave ME, Li W. CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia. 2021;23(11):1147–65. PubMed DOI PMC
He L, Lin J, Lu S, Li H, Chen J, Wu X, Yan Q, Liu H, Li H, Shi Y. CKB promotes mitochondrial ATP production by suppressing permeability transition pore. Adv Sci (Weinh). 2024;11(31):e2403093. PubMed DOI PMC
Zhou F, Dou X, Li C. CKB affects human osteosarcoma progression by regulating the p53 pathway. Am J Cancer Res. 2022;12(10):4652–65. PubMed PMC
Krutilina RI, Playa H, Brooks DL, Schwab LP, Parke DN, Oluwalana D, Layman DR, Fan M, Johnson DL, Yue J, Smallwood H, Seagroves TN. HIF-Dependent CKB expression promotes breast cancer Metastasis, whereas cyclocreatine therapy impairs cellular invasion and improves chemotherapy efficacy. Cancers (Basel). 2021;14(1):27. PubMed DOI PMC
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:242–5. PubMed DOI PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. PubMed DOI PMC
Dúcka M, Kučeríková M, Trčka F, Červinka J, Biglieri E, Šmarda J, Borsig L, Beneš P. Knopfová L. c-Myb interferes with inflammatory IL1α-NF-κB pathway in breast cancer cells. Neoplasia. 2021;23(3):326–36. PubMed DOI PMC
Benes P, Alexova P, Knopfova L, Spanova A, Smarda J. Redox state alters anti-cancer effects of Wedelolactone. Environ Mol Mutagen. 2012;53(7):515–24. PubMed DOI
Vojtĕsek B, Bártek J, Midgley CA, Lane DP. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using Recombinant p53. J Immunol Methods. 1992;151(1–2):237–44. PubMed DOI
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 is a positive regulator of osteoblastic cell migration identified by diapasef proteomics. J Proteome Res. 2024;23(8):2999–3011. PubMed DOI PMC
Lapcik P, Synkova K, Janacova L, Bouchalova P, Potesil D, Nenutil R, Bouchal P. A hybrid DDA/DIA-PASEFbased assay library for a deep proteotyping of triple-negative breast cancer. Sci Data. 2024;11(1):794. PubMed DOI PMC
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169. PubMed DOI PMC
Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023;51:207–12. PubMed DOI PMC
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:566–70. PubMed DOI PMC
Kreft L, Soete A, Hulpiau P, Botzki A, Saeys Y, De Bleser P. ConTra v3: a tool to identify transcription factor binding sites across species, update 2017. Nucleic Acids Res. 2017;45:490–4. PubMed DOI PMC
Jafari F, Javdansirat S, Sanaie S, Naseri A, Shamekh A, Rostamzadeh D, Dolati S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann Diagn Pathol. 2020;49:151654. PubMed DOI
Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31(1):8–22. PubMed DOI PMC
Li XH, Chen XJ, Ou WB, Zhang Q, Lv ZR, Zhan Y, Ma L, Huang T, Yan YB, Zhou HM. Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing Glycolysis. Int J Biochem Cell Biol. 2013;45(5):979–86. PubMed DOI
Janssen E, Terzic A, Wieringa B, Dzeja PP. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice. J Biol Chem. 2003;278(33):30441–9. PubMed DOI
Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A. Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS ONE. 2011;6(4):e19300. PubMed DOI PMC
Oshima Y, Sasaki Y, Negishi H, Idogawa M, Toyota M, Yamashita T, Wada T, Nagoya S, Kawaguchi S, Yamashita T, Tokino T. Antitumor effect of adenovirus-mediated p53 family gene transfer on osteosarcoma cell lines. Cancer Biol Ther. 2007;6(7):1058–66. PubMed DOI
Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells. 2020;12(6):481–7. PubMed DOI PMC
Gao Y, Qu Y, Zhou Q, Ma Y. SIRT6 inhibits proliferation and invasion in osteosarcoma cells by targeting N-cadherin. Oncol Lett. 2019;17(1):1237–44. PubMed PMC
Miao J, Wang W, Wu S, Zang X, Li Y, Wang J, Zhan R, Gao M, Hu M, Li J, Chen S. miR-194 suppresses proliferation and migration and promotes apoptosis of osteosarcoma cells by targeting CDH2. Cell Physiol Biochem. 2018;45(5):1966–74. PubMed DOI
Li ZQ, Liao WJ, Sun BL, Luo ZW, Zhong NS, Wu JB, Liu ZL, Liu JM. LRIG2 regulates cell proliferation, migration and apoptosis of osteosarcoma. BMC Cancer. 2022;22(1):1029. PubMed DOI PMC
Issagholian L, Tabaie E, Reddy AJ, Ghauri MS, Patel R. Expression of E-cadherin and N-cadherin in Epithelial-to-Mesenchymal transition of osteosarcoma: A systematic review. Cureus. 2023;15(11):e49521. PubMed PMC
Buddingh EP, Kuijjer ML, Duim RA, Bürger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PC, Lankester AC, Cleton-Jansen AM. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17(8):2110–9. PubMed DOI
Schlattner U, Klaus A, Ramirez Rios S, Guzun R, Kay L, Tokarska-Schlattner M. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids. 2016;48(8):1751–74. PubMed DOI
Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL, Bayless AJ, Dobrinskikh E, Kendrick AA, Kelly CJ, Burgess A, Miller L, Kominsky DJ, Jedlicka P, Colgan SP. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A. 2013;110(49):19820–5. PubMed DOI PMC
Venter G, Polling S, Pluk H, Venselaar H, Wijers M, Willemse M, Fransen JA, Wieringa B. Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. Eur J Cell Biol. 2015;94(2):114–27. PubMed DOI
Kuiper JW, van Horssen R, Oerlemans F, Peters W, van Dommelen MM, te Lindert MM, ten Hagen TL, Janssen E, Fransen JA, Wieringa B. Local ATP generation by brain-type creatine kinase (CK-B) facilitates cell motility. PLoS ONE. 2009;4(3):e5030. PubMed DOI PMC
Chen Q, Fan Y, Zhou X, Yan Z, Kuang Y, Zhang A, Xu C. GnRH antagonist alters the migration of endometrial epithelial cells by reducing CKB. Reproduction. 2020;159(6):733–43. PubMed DOI
Ganguly S, Elbayoumi T. Liposomal delivery of cyclocreatine impairs cancer cell bioenergetics mediating apoptosis. Methods Mol Biol. 2021;2275:173–86. PubMed DOI
Patel R, Ford CA, Rodgers L, Rushworth LK, Fleming J, Mui E, Zhang T, Watson D, Lynch V, Mackay G, Sumpton D, Sansom OJ, Vande Voorde J, Leung HY. Cyclocreatine suppresses creatine metabolism and impairs prostate cancer progression. Cancer Res. 2022;82(14):2565–75. PubMed DOI PMC
Martin KJ, Chen SF, Clark GM, Degen D, Wajima M, Von Hoff DD, Kaddurah-Daouk R. Evaluation of creatine analogues as a new class of anticancer agents using freshly explanted human tumor cells. J Natl Cancer Inst. 1994;86(8):608–13. PubMed DOI
Ohira Y, Inoue N. Effects of creatine and beta-guanidinopropionic acid on the growth of Ehrlich Ascites tumor cells: i.p. Injection and culture study. Biochim Biophys Acta. 1995;1243(3):367–72. PubMed DOI
Darabedian N, Ji W, Fan M, Lin S, Seo HS, Vinogradova EV, Yaron TM, Mills EL, Xiao H, Senkane K, Huntsman EM, Johnson JL, Che J, Cantley LC, Cravatt BF, Dhe-Paganon S, Stegmaier K, Zhang T, Gray NS, Chouchani ET. Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor. Nat Chem Biol. 2023;19(7):815–24. PubMed DOI PMC
Katz JL, Geng Y, Billingham LK, Sadagopan NS, DeLay SL, Subbiah J, Chia TY, McManus G, Wei C, Wang H, Lin H, Silvers C, Boland LK, Wang S, Wan H, Hou D, Vázquez-Cervantes GI, Arjmandi T, Shaikh ZH, Zhang P, Ahmed AU, Tiek DM, Lee-Chang C, Chouchani ET, Miska J. A covalent creatine kinase inhibitor ablates glioblastoma migration and sensitizes tumors to oxidative stress. Sci Rep. 2024;14(1):21959. PubMed DOI PMC
Lorenzo PI, Brendeford EM, Gilfillan S, Gavrilov AA, Leedsak M, Razin SV, Eskeland R, Sæther T, Gabrielsen OS. Identification of c-Myb target genes in K562 cells reveals a role for c-Myb as a master regulator. Genes Cancer. 2011;2(8):805–17. PubMed DOI PMC
Lemma RB, Ledsaak M, Fuglerud BM, Sandve GK, Eskeland R, Gabrielsen OS. Chromatin occupancy and target genes of the Haematopoietic master transcription factor MYB. Sci Rep. 2021;11(1):9008. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:543–52. PubMed DOI PMC