Influence of Imposed Strain on Weldability of Dievar Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-23-8231
Brno University of Technology
PubMed
38793384
PubMed Central
PMC11123005
DOI
10.3390/ma17102317
PII: ma17102317
Knihovny.cz E-zdroje
- Klíčová slova
- Dievar, heat treatment, microstructure, rotary swaging, tool steel, weldability,
- Publikační typ
- časopisecké články MeSH
The presented work is focused on the influence of imposed strain on the weldability of Dievar alloy. Two mechanisms affecting the microstructure and thus imparting changes in the mechanical properties were applied-heat treatment (hardening and tempering), and rotary swaging. The processed workpieces were further subjected to welding with various welding currents. In order to characterize the effects of welding on the microstructure, especially in the heat-affected zone, and determine material stability under elevated temperatures, samples for uniaxial hot compression testing at temperatures from 600 to 900 °C, optical and scanning electron microscopy, and microhardness testing were taken. The testing revealed that, although the rotary swaged and heat-treated samples featured comparable microhardness, the strength of the swaged material was approximately twice as high as that of the heat-treated one-specifically 1350 MPa. Furthermore, it was found that the rotary swaged sample exhibited favorable welding behavior when compared to the heat-treated one, when the higher welding current was applied.
Zobrazit více v PubMed
Kunčická L., Macháčková A., Petrmichl R., Klečková Z., Marek M. Optimizing Induction Heating of WNiCo Billets Processed via Intensive Plastic Deformation. Appl. Sci. 2020;10:8125. doi: 10.3390/app10228125. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a Thermomechanical Treatment Mode for Stainless-Steel Rings. Materials. 2022;15:4930. doi: 10.3390/ma15144930. PubMed DOI PMC
Shlyakhova G.V., Orlova D.V., Danilov V.I., Danilova L.V. Metastable Austenite Steel Structure After Thermomechanical Processing in Different Modes. Russ. Phys. J. 2021;64:1080–1085. doi: 10.1007/s11182-021-02427-x. DOI
Moskvina V.A., Melnikov E.V., Astafurov S.V., Panchenko M.Y., Reunova K.A., Kolubaev E.A., Astafurova E.G. Stable High-Nickel Austenitic Steel Produced by Electron Beam Additive Manufacturing Using Dual Wire-Feed System. Mater. Lett. 2021;305:130863. doi: 10.1016/j.matlet.2021.130863. DOI
Kutzhanov M.K., Matveev A.T., Kvashnin D.G., Corthay S., Kvashnin A.G., Konopatsky A.S., Bondarev A.V., Arkharova N.A., Shtansky D.V. Al/SiC Nanocomposites with Enhanced Thermomechanical Properties Obtained from Microwave Plasma-Treated Nanopowders. Mater. Sci. Eng. A. 2021;824:141817. doi: 10.1016/j.msea.2021.141817. DOI
Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/MA14010033. PubMed DOI PMC
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Shakil S.I.I., Smith N.R.R., Yoder S.P.P., Ross B.E.E., Alvarado D.J.J., Hadadzadeh A., Haghshenas M. Post Fabrication Thermomechanical Processing of Additive Manufactured Metals: A Review. J. Manuf. Process. 2022;73:757–790. doi: 10.1016/j.jmapro.2021.11.047. DOI
Kocich R., Kunčická L., Benč M., Weiser A., Németh G. Corrosion Behavior of Selective Laser Melting-Manufactured Bio-Applicable 316L Stainless Steel in Ionized Simulated Body Fluid. Int. J. Bioprinting. 2024;10:1416. doi: 10.36922/ijb.1416. DOI
Al-Qawabeha U.F. Effect of Heat Treatment on the Mechanical Properties, Microhardness, and Impact Energy of H13 Alloy Steel. Int. J. Sci. Eng. Res. 2017;8:6.
Guanghua Y., Xinmin H., Yanqing W., Xingguo Q., Ming Y., Zuoming C., Kang J. Effects of Heat Treatment on Mechanical Properties of H13 Steel. Met. Sci. Heat Treat. 2010;52:393–395. doi: 10.1007/s11041-010-9288-4. DOI
Prudente W.R., Lins JF C., Siqueira R.P., Mendes PS N., Pereira R.E. Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel. Int. J. Eng. Res. Appl. 2017;7:67–71. doi: 10.9790/9622-0704046771. DOI
Fedoseeva A., Kaibyshev R. Impact Toughness of a 12% Cr Martensitic Steel: Conventional Heat Treatment vs. Thermo- Krylova, T.A.; Chumakov, Y.A. Fabrication of Cr-Ti-C Composite Coating by Non-Vacuum Electron Beam Cladding. Mater. Lett. 2020;274:128022. doi: 10.1016/j.matlet.2020.128022. DOI
Gorunov A. Experimental Investigation and Numerical Simulation of Synthesis Carbides in Inconel 718/CFs/316L Composite Obtained by Direct Energy Deposition. Prog. Addit. Manuf. 2024 doi: 10.1007/s40964-024-00563-7. DOI
Stulov Y.V., Kuznetsov S.A. Synthesis of Chromium Carbide Coatings on Carbon Steels in Molten Salts and Their Properties. Glas. Phys. Chem. 2014;40:324–328. doi: 10.1134/S1087659614030225. DOI
Yeşildal R. The Effect of Heat Treatments on the Fatigue Strength of H13 Hot Work Tool Steel. Preprints. 2018:2018120226. doi: 10.20944/preprints201812.0226.v1. DOI
Dhokey N.B., Maske S.S., Ghosh P. Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13) Mater. Today Proc. 2021;43:3006–3013. doi: 10.1016/j.matpr.2021.01.361. DOI
Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC
Klimova M., Shaysultanov D., Semenyuk A., Zherebtsov S., Stepanov N. Effect of Carbon on Recrystallised Microstructures and Properties of CoCrFeMnNi-Type High-Entropy Alloys. J. Alloys Compd. 2021;851:156839. doi: 10.1016/j.jallcom.2020.156839. DOI
Kumar M., King W.E., Schwartz A.J. Modifications to the Microstructural Topology in f.c.c. Materials through Thermomechanical Processing. Acta Mater. 2000;48:2081–2091. doi: 10.1016/S1359-6454(00)00045-8. DOI
Caballero F.G., Santofimia M.J., García-Mateo C., Chao J., de Andrés C.G. Theoretical Design and Advanced Microstructure in Super High Strength Steels. Mater. Des. 2009;30:2077–2083. doi: 10.1016/j.matdes.2008.08.042. DOI
Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Straumal B.B., Kogtenkova O.A., Murashkin M.Y., Bulatov M.F., Czeppe T., Zięba P. Grain Boundary Wetting Transition in Al–Mg Alloys. Mater. Lett. 2017;186:82–85. doi: 10.1016/j.matlet.2016.09.088. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Straumal B.B., Pontikis V., Kilmametov A.R., Mazilkin A.A., Dobatkin S.V., Baretzky B. Competition between Precipitation and Dissolution in Cu–Ag Alloys under High Pressure Torsion. Acta Mater. 2017;122:60–71. doi: 10.1016/j.actamat.2016.09.024. DOI
Valiev R.Z., Straumal B., Langdon T.G. Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties. Annu. Rev. Mater. Res. 2022;52:357–382. doi: 10.1146/annurev-matsci-081720-123248. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the Metal 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 March 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.
Yan K., Liu H., Feng N., Bai J., Cheng H., Liu J., Huang F. Preparation of a Single-Phase Mg–6Zn Alloy via ECAP-Stimulated Solution Treatment. J. Magnes. Alloy. 2019;7:305–314. doi: 10.1016/J.JMA.2019.02.006. DOI
Sheremetyev V., Churakova A., Derkach M., Gunderov D., Raab G., Prokoshkin S. Effect of ECAP and Annealing on Structure and Mechanical Properties of Metastable Beta Ti-18Zr-15Nb (at.%) Alloy. Mater. Lett. 2021;305:130760. doi: 10.1016/J.MATLET.2021.130760. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 Composite by Severe Plastic Deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Danilenko V.N., Kiekkuzhina L.U., Parkhimovich N.Y., Khafizova E.D., Gunderov D.V. Cu-Al Metal Matrix Composite Fabricated by Accumulative HPT. Mater. Lett. 2021;300:130240. doi: 10.1016/J.MATLET.2021.130240. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Tabachkova N.Y., Korotkova N.O. The Microstructure and Conductivity of Copper–Aluminum Composites Prepared by Rotary Swaging. Phys. Met. Metallogr. 2022;123:1193–1200. doi: 10.1134/S0031918X22601640. DOI
Vinogradov A., Vasilev E., Kopylov V., Linderov M., Brilevesky A., Merson D. High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation. Metals. 2019;9:186. doi: 10.3390/met9020186. DOI
Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Tryaev P.V., Tabachkova N.Y., Chegurov M.K., Kozlova N.A., Mikhaylov A.S., Ershova A.V., Grayznov M.Y., et al. Effect of Severe Plastic Deformation Realized by Rotary Swaging on the Mechanical Properties and Corrosion Resistance of Near-α-Titanium Alloy Ti-2.5Al-2.6Zr. J. Alloys Compd. 2019;785:1233–1244. doi: 10.1016/j.jallcom.2019.01.268. DOI
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Genel K. Boriding kinetics of H13 steel. Vacuum. 2006;80:451–457. doi: 10.1016/j.vacuum.2005.07.013. DOI
Jia Z.X., Liu Y.W., Li J.Q., Liu L.J., Li H.L. Crack growth behavior at thermal fatigue of H13 tool steel processed by laser surface melting. Int. J. Fatigue. 2015;78:61–71. doi: 10.1016/j.ijfatigue.2015.04.005. DOI
Wang N., Zhang H., Wei Z., Dong P., Yan Z., Ding M., Li K. Solid Carburizing in Ferritic Phase Region of DIEVAR Steel: Microstructure Evolution and Formation Mechanism of Carburizing Layer. Surf. Coat. Technol. 2024;476:130200. doi: 10.1016/j.surfcoat.2023.130200. DOI
Brezinová J., Džupon M., Viňáš J., Vojtko M., Brezina J., Vasková I., Puchý V. Possibilities of Repairing Functional Surfaces of Molds for Injecting Al Alloys Using Manual GTAW Cladding. Metals. 2022;12:1781. doi: 10.3390/met12111781. DOI
Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes. Arch. Civ. Mech. Eng. 2016;16:845–866. doi: 10.1016/j.acme.2016.06.001. DOI
Balaško T., Vončina M., Medved J. Simultaneous Thermal Analysis of the High-Temperature Oxidation Behaviour of Three Hot-Work Tool Steels. J. Therm. Anal. Calorim. 2023;148:1251–1264. doi: 10.1007/s10973-022-11616-w. DOI
Garbade R.R., Dhokey N.B. Overview on Hardfacing Processes, Materials and Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021;1017:12033. doi: 10.1088/1757-899X/1017/1/012033. DOI
Wang X.H., Han F., Liu X.M., Qu S.Y., Zou Z.D. Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008;489:193–200. doi: 10.1016/j.msea.2007.12.020. DOI
Morsy M., El-Kashif E. The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits. Weld. World. 2014;58:491–497. doi: 10.1007/s40194-014-0132-0. DOI
Rajeev G.P., Kamaraj M., Bakshi S.R. Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surf. Coat. Technol. 2017;326:63–71.
Rajeev G.P., Kamaraj M., Bakshi S.R. Comparison of microstructure, dilution and wear behavior of Stellite 21 hardfacing on H13 steel using cold metal transfer and plasma transferred arc welding processes. Surf. Coat. Technol. 2019;375:383–394. doi: 10.1016/j.surfcoat.2019.07.019. DOI
Kashani H., Amadeh A., Vatanara M.R. Improvement of wear resistance of hot working tool steel by hardfacing Part 1—Effect of microstructure and hardness. Mater. Sci. Technol. 2007;23:165–170. doi: 10.1179/174328407X154220. DOI
Kashani H., Amadeh A., Vatanara M.R. Improvement of wear resistance of hot working tool steel by hardfacing Part 2—Case study. Mater. Sci. Technol. 2008;24:356–360. doi: 10.1179/174328407X166731. DOI
Tian J., Hu Y., Zhao H., Hu Y., Li Y., Zhou S., Cao C., Zhang L. The indentation and wear performance of hardfacing layers on H13 steel for use in high temperature application. AIP Adv. 2019;9:095304. doi: 10.1063/1.5100013. DOI
Wang X., Wang J., Gao Z., Xia D.H., Hu W. Tempering effects on the microstructure and properties of submerged arc surfacing layers of H13 steel. J. Mater. Process. Technol. 2019;269:26–34. doi: 10.1016/j.jmatprotec.2019.01.024. DOI
Karmakar D.P., Muvvala G., Nath A.K. High-temperature abrasive wear characteristics of H13 steel modified by laser remelting and cladded with Stellite 6 and Stellite 6/30% WC. Surf. Coat. Technol. 2021;422:127498. doi: 10.1016/j.surfcoat.2021.127498. DOI
Ahn D.G. Hardfacing technologies for improvement of wear characteristics of hot working tools: A Review. Int. J. Precis. Eng. Manuf. 2013;14:1271–1283. doi: 10.1007/s12541-013-0174-z. DOI
d’Oliveira A.S.C.M., Paredes R.S.C., Santos R.L.C. Pulsed current plasma transferred arc hardfacing. J. Mater. Process. Technol. 2006;171:167–174. doi: 10.1016/j.jmatprotec.2005.02.269. DOI
Tandon D., Li H., Pan Z., Yu D., Pang W. A Review on Hardfacing, Process Variables, Challenges, and Future Works. Metals. 2023;13:1512. doi: 10.3390/met13091512. DOI
Farahmand P., Balu P., Kong F., Kovacevic R. Investigation of thermal cycle and hardness distribution in the laser cladding of AISI H13 tool steel produced by a high power direct diode laser; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; San Diego, CA, USA. 15–21 November 2013; New York, NY, USA: American Society of Mechanical Engineers; 2014. DOI
Shah M., Ali M., Sultan A., Mujahid M., Mehmood H., Dar N.U., Shuaib M. An Investigation into the Fatigue Crack Growth Rate of Electron Beam-Welded H13 Tool Steel: Effect of Welding and Post-Weld Heat Treatment. Metallogr. Microstruct. Anal. 2014;3:114–125. doi: 10.1007/s13632-014-0128-6. DOI
Okechukwu C., Dahunsi O.A., Oke P.K., Oladele I.O., Dauda M. Review on hardfacing as method of improving the service life of critical components subjected to wear in service. Niger. J. Technol. 2018;36:1095. doi: 10.4314/njt.v36i4.15. DOI
Han Y., Li C., Ren J., Qiu C., Li E., Chen S. Characterization of Hot Deformation Behavior and Processing Map of As-Cast H13 Hot Work Die Steel. Met. Mater. Int. 2021;27:3574–3589. doi: 10.1007/s12540-020-00863-x. DOI
Li C., Liu Y., Tan Y., Zhao F. Hot deformation behavior and constitutive modeling of H13-mod steel. Metals. 2018;8:846. doi: 10.3390/met8100846. DOI
He G., Feng Y., Jiang B., Wu H., Wang Z., Zhao H., Liu Y. Corrosion and Abrasion Behavior of High-Temperature Carburized 20MnCr5 Gear Steel with Nb and B Microalloying. J. Mater. Res. Technol. 2023;25:5845–5854. doi: 10.1016/j.jmrt.2023.07.048. DOI
Lange K., Cser L., Geiger M., Kals J.A.G. Tool Life and Tool Quality in Bulk Metal Forming. CIRP Ann. 1992;41:667–675. doi: 10.1016/S0007-8506(07)63253-3. DOI
Medvedeva N.I., Van Aken D.C., Medvedeva J.E. Stability of Binary and Ternary M23C6 Carbides from First Principles. Comput. Mater. Sci. 2015;96:159–164. doi: 10.1016/j.commatsci.2014.09.016. DOI
Köse C. Effect of Post-Weld Heat Treatment on Microstructure, Crystallography, and Mechanical Properties of Laser Beam Welded AISI 904L Super Austenitic Stainless Steel. Eng. Fail. Anal. 2024;158:108025. doi: 10.1016/j.engfailanal.2024.108025. DOI
Han H.G., Wang F., Lu Y.H., Han Y.M., Chen Z.Z. A Study on As-Welded Microstructure and Mechanical Properties of Thick-Walled 9Cr3W3Co1CuVNbBN Martensitic Steel Weldment. Int. J. Press. Vessel. Pip. 2023;206:105077. doi: 10.1016/j.ijpvp.2023.105077. DOI