Influence of Imposed Strain on Weldability of Dievar Alloy

. 2024 May 14 ; 17 (10) : . [epub] 20240514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38793384

Grantová podpora
FSI-S-23-8231 Brno University of Technology

The presented work is focused on the influence of imposed strain on the weldability of Dievar alloy. Two mechanisms affecting the microstructure and thus imparting changes in the mechanical properties were applied-heat treatment (hardening and tempering), and rotary swaging. The processed workpieces were further subjected to welding with various welding currents. In order to characterize the effects of welding on the microstructure, especially in the heat-affected zone, and determine material stability under elevated temperatures, samples for uniaxial hot compression testing at temperatures from 600 to 900 °C, optical and scanning electron microscopy, and microhardness testing were taken. The testing revealed that, although the rotary swaged and heat-treated samples featured comparable microhardness, the strength of the swaged material was approximately twice as high as that of the heat-treated one-specifically 1350 MPa. Furthermore, it was found that the rotary swaged sample exhibited favorable welding behavior when compared to the heat-treated one, when the higher welding current was applied.

Zobrazit více v PubMed

Kunčická L., Macháčková A., Petrmichl R., Klečková Z., Marek M. Optimizing Induction Heating of WNiCo Billets Processed via Intensive Plastic Deformation. Appl. Sci. 2020;10:8125. doi: 10.3390/app10228125. DOI

Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC

Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a Thermomechanical Treatment Mode for Stainless-Steel Rings. Materials. 2022;15:4930. doi: 10.3390/ma15144930. PubMed DOI PMC

Shlyakhova G.V., Orlova D.V., Danilov V.I., Danilova L.V. Metastable Austenite Steel Structure After Thermomechanical Processing in Different Modes. Russ. Phys. J. 2021;64:1080–1085. doi: 10.1007/s11182-021-02427-x. DOI

Moskvina V.A., Melnikov E.V., Astafurov S.V., Panchenko M.Y., Reunova K.A., Kolubaev E.A., Astafurova E.G. Stable High-Nickel Austenitic Steel Produced by Electron Beam Additive Manufacturing Using Dual Wire-Feed System. Mater. Lett. 2021;305:130863. doi: 10.1016/j.matlet.2021.130863. DOI

Kutzhanov M.K., Matveev A.T., Kvashnin D.G., Corthay S., Kvashnin A.G., Konopatsky A.S., Bondarev A.V., Arkharova N.A., Shtansky D.V. Al/SiC Nanocomposites with Enhanced Thermomechanical Properties Obtained from Microwave Plasma-Treated Nanopowders. Mater. Sci. Eng. A. 2021;824:141817. doi: 10.1016/j.msea.2021.141817. DOI

Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/MA14010033. PubMed DOI PMC

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI

Shakil S.I.I., Smith N.R.R., Yoder S.P.P., Ross B.E.E., Alvarado D.J.J., Hadadzadeh A., Haghshenas M. Post Fabrication Thermomechanical Processing of Additive Manufactured Metals: A Review. J. Manuf. Process. 2022;73:757–790. doi: 10.1016/j.jmapro.2021.11.047. DOI

Kocich R., Kunčická L., Benč M., Weiser A., Németh G. Corrosion Behavior of Selective Laser Melting-Manufactured Bio-Applicable 316L Stainless Steel in Ionized Simulated Body Fluid. Int. J. Bioprinting. 2024;10:1416. doi: 10.36922/ijb.1416. DOI

Al-Qawabeha U.F. Effect of Heat Treatment on the Mechanical Properties, Microhardness, and Impact Energy of H13 Alloy Steel. Int. J. Sci. Eng. Res. 2017;8:6.

Guanghua Y., Xinmin H., Yanqing W., Xingguo Q., Ming Y., Zuoming C., Kang J. Effects of Heat Treatment on Mechanical Properties of H13 Steel. Met. Sci. Heat Treat. 2010;52:393–395. doi: 10.1007/s11041-010-9288-4. DOI

Prudente W.R., Lins JF C., Siqueira R.P., Mendes PS N., Pereira R.E. Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel. Int. J. Eng. Res. Appl. 2017;7:67–71. doi: 10.9790/9622-0704046771. DOI

Fedoseeva A., Kaibyshev R. Impact Toughness of a 12% Cr Martensitic Steel: Conventional Heat Treatment vs. Thermo- Krylova, T.A.; Chumakov, Y.A. Fabrication of Cr-Ti-C Composite Coating by Non-Vacuum Electron Beam Cladding. Mater. Lett. 2020;274:128022. doi: 10.1016/j.matlet.2020.128022. DOI

Gorunov A. Experimental Investigation and Numerical Simulation of Synthesis Carbides in Inconel 718/CFs/316L Composite Obtained by Direct Energy Deposition. Prog. Addit. Manuf. 2024 doi: 10.1007/s40964-024-00563-7. DOI

Stulov Y.V., Kuznetsov S.A. Synthesis of Chromium Carbide Coatings on Carbon Steels in Molten Salts and Their Properties. Glas. Phys. Chem. 2014;40:324–328. doi: 10.1134/S1087659614030225. DOI

Yeşildal R. The Effect of Heat Treatments on the Fatigue Strength of H13 Hot Work Tool Steel. Preprints. 2018:2018120226. doi: 10.20944/preprints201812.0226.v1. DOI

Dhokey N.B., Maske S.S., Ghosh P. Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13) Mater. Today Proc. 2021;43:3006–3013. doi: 10.1016/j.matpr.2021.01.361. DOI

Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI

Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC

Klimova M., Shaysultanov D., Semenyuk A., Zherebtsov S., Stepanov N. Effect of Carbon on Recrystallised Microstructures and Properties of CoCrFeMnNi-Type High-Entropy Alloys. J. Alloys Compd. 2021;851:156839. doi: 10.1016/j.jallcom.2020.156839. DOI

Kumar M., King W.E., Schwartz A.J. Modifications to the Microstructural Topology in f.c.c. Materials through Thermomechanical Processing. Acta Mater. 2000;48:2081–2091. doi: 10.1016/S1359-6454(00)00045-8. DOI

Caballero F.G., Santofimia M.J., García-Mateo C., Chao J., de Andrés C.G. Theoretical Design and Advanced Microstructure in Super High Strength Steels. Mater. Des. 2009;30:2077–2083. doi: 10.1016/j.matdes.2008.08.042. DOI

Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI

Straumal B.B., Kogtenkova O.A., Murashkin M.Y., Bulatov M.F., Czeppe T., Zięba P. Grain Boundary Wetting Transition in Al–Mg Alloys. Mater. Lett. 2017;186:82–85. doi: 10.1016/j.matlet.2016.09.088. DOI

Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI

Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Straumal B.B., Pontikis V., Kilmametov A.R., Mazilkin A.A., Dobatkin S.V., Baretzky B. Competition between Precipitation and Dissolution in Cu–Ag Alloys under High Pressure Torsion. Acta Mater. 2017;122:60–71. doi: 10.1016/j.actamat.2016.09.024. DOI

Valiev R.Z., Straumal B., Langdon T.G. Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties. Annu. Rev. Mater. Res. 2022;52:357–382. doi: 10.1146/annurev-matsci-081720-123248. DOI

Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the Metal 2013: 22nd International Metallurgical and Materials Conference; Brno, Czech Republic. 15–17 March 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.

Yan K., Liu H., Feng N., Bai J., Cheng H., Liu J., Huang F. Preparation of a Single-Phase Mg–6Zn Alloy via ECAP-Stimulated Solution Treatment. J. Magnes. Alloy. 2019;7:305–314. doi: 10.1016/J.JMA.2019.02.006. DOI

Sheremetyev V., Churakova A., Derkach M., Gunderov D., Raab G., Prokoshkin S. Effect of ECAP and Annealing on Structure and Mechanical Properties of Metastable Beta Ti-18Zr-15Nb (at.%) Alloy. Mater. Lett. 2021;305:130760. doi: 10.1016/J.MATLET.2021.130760. DOI

Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 Composite by Severe Plastic Deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI

Danilenko V.N., Kiekkuzhina L.U., Parkhimovich N.Y., Khafizova E.D., Gunderov D.V. Cu-Al Metal Matrix Composite Fabricated by Accumulative HPT. Mater. Lett. 2021;300:130240. doi: 10.1016/J.MATLET.2021.130240. DOI

Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI

Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Tabachkova N.Y., Korotkova N.O. The Microstructure and Conductivity of Copper–Aluminum Composites Prepared by Rotary Swaging. Phys. Met. Metallogr. 2022;123:1193–1200. doi: 10.1134/S0031918X22601640. DOI

Vinogradov A., Vasilev E., Kopylov V., Linderov M., Brilevesky A., Merson D. High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation. Metals. 2019;9:186. doi: 10.3390/met9020186. DOI

Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Tryaev P.V., Tabachkova N.Y., Chegurov M.K., Kozlova N.A., Mikhaylov A.S., Ershova A.V., Grayznov M.Y., et al. Effect of Severe Plastic Deformation Realized by Rotary Swaging on the Mechanical Properties and Corrosion Resistance of Near-α-Titanium Alloy Ti-2.5Al-2.6Zr. J. Alloys Compd. 2019;785:1233–1244. doi: 10.1016/j.jallcom.2019.01.268. DOI

Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI

Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI

Genel K. Boriding kinetics of H13 steel. Vacuum. 2006;80:451–457. doi: 10.1016/j.vacuum.2005.07.013. DOI

Jia Z.X., Liu Y.W., Li J.Q., Liu L.J., Li H.L. Crack growth behavior at thermal fatigue of H13 tool steel processed by laser surface melting. Int. J. Fatigue. 2015;78:61–71. doi: 10.1016/j.ijfatigue.2015.04.005. DOI

Wang N., Zhang H., Wei Z., Dong P., Yan Z., Ding M., Li K. Solid Carburizing in Ferritic Phase Region of DIEVAR Steel: Microstructure Evolution and Formation Mechanism of Carburizing Layer. Surf. Coat. Technol. 2024;476:130200. doi: 10.1016/j.surfcoat.2023.130200. DOI

Brezinová J., Džupon M., Viňáš J., Vojtko M., Brezina J., Vasková I., Puchý V. Possibilities of Repairing Functional Surfaces of Molds for Injecting Al Alloys Using Manual GTAW Cladding. Metals. 2022;12:1781. doi: 10.3390/met12111781. DOI

Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes. Arch. Civ. Mech. Eng. 2016;16:845–866. doi: 10.1016/j.acme.2016.06.001. DOI

Balaško T., Vončina M., Medved J. Simultaneous Thermal Analysis of the High-Temperature Oxidation Behaviour of Three Hot-Work Tool Steels. J. Therm. Anal. Calorim. 2023;148:1251–1264. doi: 10.1007/s10973-022-11616-w. DOI

Garbade R.R., Dhokey N.B. Overview on Hardfacing Processes, Materials and Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021;1017:12033. doi: 10.1088/1757-899X/1017/1/012033. DOI

Wang X.H., Han F., Liu X.M., Qu S.Y., Zou Z.D. Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008;489:193–200. doi: 10.1016/j.msea.2007.12.020. DOI

Morsy M., El-Kashif E. The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits. Weld. World. 2014;58:491–497. doi: 10.1007/s40194-014-0132-0. DOI

Rajeev G.P., Kamaraj M., Bakshi S.R. Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surf. Coat. Technol. 2017;326:63–71.

Rajeev G.P., Kamaraj M., Bakshi S.R. Comparison of microstructure, dilution and wear behavior of Stellite 21 hardfacing on H13 steel using cold metal transfer and plasma transferred arc welding processes. Surf. Coat. Technol. 2019;375:383–394. doi: 10.1016/j.surfcoat.2019.07.019. DOI

Kashani H., Amadeh A., Vatanara M.R. Improvement of wear resistance of hot working tool steel by hardfacing Part 1—Effect of microstructure and hardness. Mater. Sci. Technol. 2007;23:165–170. doi: 10.1179/174328407X154220. DOI

Kashani H., Amadeh A., Vatanara M.R. Improvement of wear resistance of hot working tool steel by hardfacing Part 2—Case study. Mater. Sci. Technol. 2008;24:356–360. doi: 10.1179/174328407X166731. DOI

Tian J., Hu Y., Zhao H., Hu Y., Li Y., Zhou S., Cao C., Zhang L. The indentation and wear performance of hardfacing layers on H13 steel for use in high temperature application. AIP Adv. 2019;9:095304. doi: 10.1063/1.5100013. DOI

Wang X., Wang J., Gao Z., Xia D.H., Hu W. Tempering effects on the microstructure and properties of submerged arc surfacing layers of H13 steel. J. Mater. Process. Technol. 2019;269:26–34. doi: 10.1016/j.jmatprotec.2019.01.024. DOI

Karmakar D.P., Muvvala G., Nath A.K. High-temperature abrasive wear characteristics of H13 steel modified by laser remelting and cladded with Stellite 6 and Stellite 6/30% WC. Surf. Coat. Technol. 2021;422:127498. doi: 10.1016/j.surfcoat.2021.127498. DOI

Ahn D.G. Hardfacing technologies for improvement of wear characteristics of hot working tools: A Review. Int. J. Precis. Eng. Manuf. 2013;14:1271–1283. doi: 10.1007/s12541-013-0174-z. DOI

d’Oliveira A.S.C.M., Paredes R.S.C., Santos R.L.C. Pulsed current plasma transferred arc hardfacing. J. Mater. Process. Technol. 2006;171:167–174. doi: 10.1016/j.jmatprotec.2005.02.269. DOI

Tandon D., Li H., Pan Z., Yu D., Pang W. A Review on Hardfacing, Process Variables, Challenges, and Future Works. Metals. 2023;13:1512. doi: 10.3390/met13091512. DOI

Farahmand P., Balu P., Kong F., Kovacevic R. Investigation of thermal cycle and hardness distribution in the laser cladding of AISI H13 tool steel produced by a high power direct diode laser; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; San Diego, CA, USA. 15–21 November 2013; New York, NY, USA: American Society of Mechanical Engineers; 2014. DOI

Shah M., Ali M., Sultan A., Mujahid M., Mehmood H., Dar N.U., Shuaib M. An Investigation into the Fatigue Crack Growth Rate of Electron Beam-Welded H13 Tool Steel: Effect of Welding and Post-Weld Heat Treatment. Metallogr. Microstruct. Anal. 2014;3:114–125. doi: 10.1007/s13632-014-0128-6. DOI

Okechukwu C., Dahunsi O.A., Oke P.K., Oladele I.O., Dauda M. Review on hardfacing as method of improving the service life of critical components subjected to wear in service. Niger. J. Technol. 2018;36:1095. doi: 10.4314/njt.v36i4.15. DOI

Han Y., Li C., Ren J., Qiu C., Li E., Chen S. Characterization of Hot Deformation Behavior and Processing Map of As-Cast H13 Hot Work Die Steel. Met. Mater. Int. 2021;27:3574–3589. doi: 10.1007/s12540-020-00863-x. DOI

Li C., Liu Y., Tan Y., Zhao F. Hot deformation behavior and constitutive modeling of H13-mod steel. Metals. 2018;8:846. doi: 10.3390/met8100846. DOI

He G., Feng Y., Jiang B., Wu H., Wang Z., Zhao H., Liu Y. Corrosion and Abrasion Behavior of High-Temperature Carburized 20MnCr5 Gear Steel with Nb and B Microalloying. J. Mater. Res. Technol. 2023;25:5845–5854. doi: 10.1016/j.jmrt.2023.07.048. DOI

Lange K., Cser L., Geiger M., Kals J.A.G. Tool Life and Tool Quality in Bulk Metal Forming. CIRP Ann. 1992;41:667–675. doi: 10.1016/S0007-8506(07)63253-3. DOI

Medvedeva N.I., Van Aken D.C., Medvedeva J.E. Stability of Binary and Ternary M23C6 Carbides from First Principles. Comput. Mater. Sci. 2015;96:159–164. doi: 10.1016/j.commatsci.2014.09.016. DOI

Köse C. Effect of Post-Weld Heat Treatment on Microstructure, Crystallography, and Mechanical Properties of Laser Beam Welded AISI 904L Super Austenitic Stainless Steel. Eng. Fail. Anal. 2024;158:108025. doi: 10.1016/j.engfailanal.2024.108025. DOI

Han H.G., Wang F., Lu Y.H., Han Y.M., Chen Z.Z. A Study on As-Welded Microstructure and Mechanical Properties of Thick-Walled 9Cr3W3Co1CuVNbBN Martensitic Steel Weldment. Int. J. Press. Vessel. Pip. 2023;206:105077. doi: 10.1016/j.ijpvp.2023.105077. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...