• This record comes from PubMed

Immobilized Enzymes on Graphene as Nanobiocatalyst

. 2020 Jan 08 ; 12 (1) : 250-259. [epub] 20191230

Language English Country United States Media print-electronic

Document type Journal Article

Using enzymes as bioelectrocatalysts is an important step toward the next level of biotechnology for energy production. In such biocatalysts, a sacrificial cofactor as an electron and proton source is needed. This is a great obstacle for upscaling, due to cofactor instability and product separation issues, which increase the costs. Here, we report a cofactor-free electroreduction of CO2 to a high energy density chemical (methanol) catalyzed by enzyme-graphene hybrids. The biocatalyst consists of dehydrogenases covalently bound on a well-defined carboxyl graphene derivative, serving the role of a conductive nanoplatform. This nanobiocatalyst achieves reduction of CO2 to methanol at high current densities, which remain unchanged for at least 20 h of operation, without production of other soluble byproducts. It is thus shown that critical improvements on the stability and rate of methanol production at a high Faradaic efficiency of 12% are possible, due to the effective electrochemical process from the electrode to the enzymes via the graphene platform.

See more in PubMed

Baede A. P. M.; van der Linden P.; Verbruggen A.. Annex II to IPCC Fourth Assessment Report; Cambridge University Press, 2007.

Lüthi D.; Le Floch M.; Bereiter B.; Blunier T.; Barnola J.-M.; Siegenthaler U.; Raynaud D.; Jouzel J.; Fischer H.; Kawamura K.; et al. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453 (7193), 379–382. 10.1038/nature06949. PubMed DOI

Arrhenius S. XXXI. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philos. Mag. S. 5 1896, 41 (251), 237–276. 10.1080/14786449608620846. DOI

Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC

Aresta M.; Dibenedetto A. Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges. Dalt. Trans. 2007, (28), 2975–2992. 10.1039/b700658f. PubMed DOI

Kondratenko E. V.; Mul G.; Baltrusaitis J.; Larrazábal G. O.; Pérez-Ramírez J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci. 2013, 6 (11), 3112–3135. 10.1039/c3ee41272e. DOI

Li H.; Opgenorth P. H.; Wernick D. G.; Rogers S.; Wu T.-Y.; Higashide W.; Malati P.; Huo Y.-X.; Cho K. M.; Liao J. C. Integrated Electromicrobial Conversion of CO2 to Higher Alcohols. Science 2012, 335 (6076), 1596.10.1126/science.1217643. PubMed DOI

Aresta M.; Dibenedetto A.. Key Issues in Carbon Dioxide Utilization as a Building Block for Molecular Organic Compounds in the Chemical Industry. CO2 Conversion and Utilization; American Chemical Society, 2002; Chapter 4.

Olah G. A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem., Int. Ed. 2005, 44 (18), 2636–2639. 10.1002/anie.200462121. PubMed DOI

Olah G. A.; Goeppert A.; Prakash G. K. S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74 (2), 487–498. 10.1021/jo801260f. PubMed DOI

Schlager S.; Dibenedetto A.; Aresta M.; Apaydin D. H.; Dumitru L. M.; Neugebauer H.; Sariciftci N. S. Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide Using Enzymes. Energy Technol. 2017, 5 (6), 812–821. 10.1002/ente.201600610. PubMed DOI PMC

Apaydin D. H.; Schlager S.; Portenkirchner E.; Sariciftci N. S. Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2. ChemPhysChem 2017, 18 (22), 3094–3116. 10.1002/cphc.201700148. PubMed DOI PMC

Singh R. K.; Singh R.; Sivakumar D.; Kondaveeti S.; Kim T.; Li J.; Sung B. H.; Cho B.-K.; Kim D. R.; Kim S. C.; et al. Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction. ACS Catal. 2018, 8 (12), 11085–11093. 10.1021/acscatal.8b02646. DOI

Ji X.; Su Z.; Wang P.; Ma G.; Zhang S. Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes. ACS Nano 2015, 9 (4), 4600–4610. 10.1021/acsnano.5b01278. PubMed DOI

Peterson A. A.; Nørskov J. K. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251–258. 10.1021/jz201461p. DOI

Hori Y.Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer New York: New York, 2008; pp 89–189.

Kuhl K. P.; Cave E. R.; Abram D. N.; Jaramillo T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 7050.10.1039/c2ee21234j. DOI

Kumar B.; Llorente M.; Froehlich J.; Dang T.; Sathrum A.; Kubiak C. P. Photochemical and Photoelectrochemical Reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63 (1), 541–569. 10.1146/annurev-physchem-032511-143759. PubMed DOI

Hawecker J.; Lehn J.-M.; Ziessel R. Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2’-Bipyridine)Tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. Helv. Chim. Acta 1986, 69 (8), 1990–2012. 10.1002/hlca.19860690824. DOI

Lehn J. M.; Ziessel R. Photochemical Generation of Carbon Monoxide and Hydrogen by Reduction of Carbon Dioxide and Water under Visible Light Irradiation. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (2), 701–704. 10.1073/pnas.79.2.701. PubMed DOI PMC

Rakowski Dubois M.; Dubois D. L. Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation. Acc. Chem. Res. 2009, 42 (12), 1974–1982. 10.1021/ar900110c. PubMed DOI

Schuchmann K.; Müller V. Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase. Science 2013, 342 (6164), 1382–1385. 10.1126/science.1244758. PubMed DOI

Chiu S.-Y.; Kao C.-Y.; Chen C.-H.; Kuan T.-C.; Ong S.-C.; Lin C.-S. Reduction of CO2 by a High-Density Culture of Chlorella Sp. in a Semicontinuous Photobioreactor. Bioresour. Technol. 2008, 99 (9), 3389–3396. 10.1016/j.biortech.2007.08.013. PubMed DOI

Albo J.; Sáez A.; Solla-Gullón J.; Montiel V.; Irabien A. Production of Methanol from CO2 Electroreduction at Cu2O and Cu2O/ZnO-Based Electrodes in Aqueous Solution. Appl. Catal., B 2015, 176–177, 709–717. 10.1016/j.apcatb.2015.04.055. DOI

Albo J.; Irabien A. Cu2O-Loaded Gas Diffusion Electrodes for the Continuous Electrochemical Reduction of CO2 to Methanol. J. Catal. 2016, 343, 232–239. 10.1016/j.jcat.2015.11.014. DOI

Yang D.; Zhu Q.; Chen C.; Liu H.; Liu Z.; Zhao Z.; Zhang X.; Liu S.; Han B. Selective Electroreduction of Carbon Dioxide to Methanol on Copper Selenide Nanocatalysts. Nat. Commun. 2019, 10 (1), 677.10.1038/s41467-019-08653-9. PubMed DOI PMC

Studt F.; Sharafutdinov I.; Abild-Pedersen F.; Elkjær C. F.; Hummelshøj J. S.; Dahl S.; Chorkendorff I.; Nørskov J. K. Discovery of a Ni-Ga Catalyst for Carbon Dioxide Reduction to Methanol. Nat. Chem. 2014, 6 (4), 320–324. 10.1038/nchem.1873. PubMed DOI

Qiao J.; Liu Y.; Hong F.; Zhang J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. 10.1039/C3CS60323G. PubMed DOI

Appel A. M.; Bercaw J. E.; Bocarsly A. B.; Dobbek H.; DuBois D. L.; Dupuis M.; Ferry J. G.; Fujita E.; Hille R.; Kenis P. J. A.; et al. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chem. Rev. 2013, 113 (8), 6621–6658. 10.1021/cr300463y. PubMed DOI PMC

Aresta M.; Dibenedetto A.; Pastore C. Biotechnology to Develop Innovative Syntheses Using CO2. Environ. Chem. Lett. 2005, 3 (3), 113–117. 10.1007/s10311-005-0009-y. DOI

Mandler D.; Willner I. Photochemical Fixation of Carbon Dioxide: Enzymic Photosynthesis of Malic, Aspartic, Isocitric, and Formic Acids in Artificial Media. J. Chem. Soc., Perkin Trans. 2 1988, (6), 997.10.1039/p29880000997. DOI

Parkinson B. A.; Weaver P. F. Photoelectrochemical Pumping of Enzymatic 2 Reduction. Nature 1984, 309 (5964), 148–149. 10.1038/309148a0. DOI

Andreesen J. R.; Ljungdahl L. G. Formate Dehydrogenase of Clostridium Thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme. J. Bacteriol. 1973, 116 (2), 867–873. PubMed PMC

Seelbach K.; Riebel B.; Hummel W.; Kula M.-R.; Tishkov V. I.; Egorov A. M.; Wandrey C.; Kragl U. A Novel, Efficient Regenerating Method of NADPH Using a New Formate Dehydrogenase. Tetrahedron Lett. 1996, 37 (9), 1377–1380. 10.1016/0040-4039(96)00010-X. DOI

Obert R.; Dave B. C. Enzymatic Conversion of Carbon Dioxide to Methanol: Enhanced Methanol Production in Silica Sol-Gel Matrices. J. Am. Chem. Soc. 1999, 121, 12192–12193. 10.1021/ja991899r. DOI

Singh R. K. R.; Singh R. K. R.; Sivakumar D.; Kondaveeti S.; Kim T.; Li J.; Sung B. H.; Cho B.-K.; Kim D. R.; Kim S. C.; et al. Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction. ACS Catal. 2018, 8 (12), 11085–11093. 10.1021/acscatal.8b02646. DOI

Schlager S.; Dumitru L. M.; Haberbauer M.; Fuchsbauer A.; Neugebauer H.; Hiemetsberger D.; Wagner A.; Portenkirchner E.; Sariciftci N. S. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode. ChemSusChem 2016, 9 (6), 631–635. 10.1002/cssc.201501496. PubMed DOI PMC

Schlager S.; Neugebauer H.; Haberbauer M.; Hinterberger G.; Sariciftci N. S. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol. ChemCatChem 2015, 7 (6), 967–971. 10.1002/cctc.201402932. PubMed DOI PMC

Rabaey K.; Rozendal R. A. Microbial Electrosynthesis — Revisiting the Electrical Route for Microbial Production. Nat. Rev. Microbiol. 2010, 8 (10), 706–716. 10.1038/nrmicro2422. PubMed DOI

Amao Y.; Shuto N. Formate Dehydrogenase-Viologen-Immobilized Electrode for CO2 Conversion, for Development of an Artificial Photosynthesis System. Res. Chem. Intermed. 2014, 40 (9), 3267–3276. 10.1007/s11164-014-1832-1. DOI

Reda T.; Plugge C. M.; Abram N. J.; Hirst J. Reversible Interconversion of Carbon Dioxide and Formate by an Electroactive Enzyme. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (31), 10654–10658. 10.1073/pnas.0801290105. PubMed DOI PMC

Lima F.; Maia G. Direct Electron Transfer from Alcohol Dehydrogenase. RSC Adv. 2014, 4 (43), 22575–22588. 10.1039/c4ra02946a. DOI

Zhao X.; Mai Z.; Kang X.; Zou X. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Based on Clay-Chitosan-Gold Nanoparticle Nanocomposite. Biosens. Bioelectron. 2008, 23, 1032–1038. 10.1016/j.bios.2007.10.012. PubMed DOI

Zhou Y.; Yang H.; Chen H.-Y. Direct Electrochemistry and Reagentless Biosensing of Glucose Oxidase Immobilized on Chitosan Wrapped Single-Walled Carbon Nanotubes. Talanta 2008, 76, 419–423. 10.1016/j.talanta.2008.03.028. PubMed DOI

Shan D.; Wang S.; Xue H.; Cosnier S. Direct Electrochemistry and Electrocatalysis of Hemoglobin Entrapped in Composite Matrix Based on Chitosan and CaCO3 Nanoparticles. Electrochem. Commun. 2007, 9 (4), 529–534. 10.1016/j.elecom.2006.10.032. DOI

Liu J.; Guo C.; Li C. M.; Li Y.; Chi Q.; Huang X.; Liao L.; Yu T. Carbon-Decorated ZnO Nanowire Array: A Novel Platform for Direct Electrochemistry of Enzymes and Biosensing Applications. Electrochem. Commun. 2009, 11, 202–205. 10.1016/j.elecom.2008.11.009. DOI

Zang J.; Li C. M.; Cui X.; Wang J.; Sun X.; Dong H.; Sun C. Q. Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis 2007, 19 (9), 1008–1014. 10.1002/elan.200603808. DOI

Jia J.; Wang B.; Wu A.; Cheng G.; Li Z.; Dong S. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol–Gel Network. Anal. Chem. 2002, 74 (9), 2217–2223. 10.1021/ac011116w. PubMed DOI

Zhang Q.; Zhang L.; Liu B.; Lu X.; Li J. Assembly of Quantum Dots-Mesoporous Silicate Hybrid Material for Protein Immobilization and Direct Electrochemistry. Biosens. Bioelectron. 2007, 23, 695–700. 10.1016/j.bios.2007.08.008. PubMed DOI

Nadzhafova O.; Etienne M.; Walcarius A. Direct Electrochemistry of Hemoglobin and Glucose Oxidase in Electrodeposited Sol-Gel Silica Thin Films on Glassy Carbon. Electrochem. Commun. 2007, 9 (5), 1189–1195. 10.1016/j.elecom.2007.01.010. DOI

Blankenship R. E.; Tiede D. M.; Barber J.; Brudvig G. W.; Fleming G.; Ghirardi M.; Gunner M. R.; Junge W.; Kramer D. M.; Melis A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332 (6031), 805–809. 10.1126/science.1200165. PubMed DOI

Zhang J. J.; Zhang F.; Yang H.; Huang X.; Liu H.; Zhang J. J.; Guo S. Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26 (9), 6083–6085. 10.1021/la904014z. PubMed DOI

Zuo X.; He S.; Li D.; Peng C.; Huang Q.; Song S.; Fan C. Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces. Langmuir 2010, 26 (3), 1936–1939. 10.1021/la902496u. PubMed DOI

Liu Y.; Yu D.; Zeng C.; Miao Z.; Dai L. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir 2010, 26 (9), 6158–6160. 10.1021/la100886x. PubMed DOI

Shao Y.; Wang J.; Wu H.; Liu J.; Aksay I. A.; Lin Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22 (10), 1027–1036. 10.1002/elan.200900571. DOI

Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27 (14), 2305–2310. 10.1002/adma.201500094. PubMed DOI

Liu C.; Alwarappan S.; Chen Z.; Kong X.; Li C.-Z. Membraneless Enzymatic Biofuel Cells Based on Graphene Nanosheets. Biosens. Bioelectron. 2010, 25 (7), 1829–1833. 10.1016/j.bios.2009.12.012. PubMed DOI

Prasad K. P.; Chen Y.; Chen P. Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuel Cells. ACS Appl. Mater. Interfaces 2014, 6 (5), 3387–3393. 10.1021/am405432b. PubMed DOI

Walcarius A.; Minteer S. D.; Wang J.; Lin Y.; Merkoçi A. Materials for Biology and Medicine Nanomaterials for Bio-Functionalized Electrodes: Recent Trends. J. Mater. Chem. B 2013, 1, 4878–4908. 10.1039/c3tb20881h. PubMed DOI

Guo K.; Qian K.; Zhang S.; Kong J.; Yu C.; Liu B. Bio-Electrocatalysis of NADH and Ethanol Based on Graphene Sheets Modified Electrodes. Talanta 2011, 85 (2), 1174–1179. 10.1016/j.talanta.2011.05.038. PubMed DOI

Besharati Vineh M.; Saboury A. A.; Poostchi A. A.; Rashidi A. M.; Parivar K. Stability and Activity Improvement of Horseradish Peroxidase by Covalent Immobilization on Functionalized Reduced Graphene Oxide and Biodegradation of High Phenol Concentration. Int. J. Biol. Macromol. 2018, 106, 1314–1322. 10.1016/j.ijbiomac.2017.08.133. PubMed DOI

Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the Structure of Graphite Oxide: Absolute Quantification of Functional Groups via Selective Labelling †. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI

Marcano D. C.; Kosynkin D. V.; Berlin J. M.; Sinitskii A.; Sun Z.; Slesarev A.; Alemany L. B.; Lu W.; Tour J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814. 10.1021/nn1006368. PubMed DOI

Lerf A.; He H.; Forster M.; Klinowski J. Structure of Graphite Oxide Revisited∥. J. Phys. Chem. B 1998, 102 (23), 4477–4482. 10.1021/jp9731821. DOI

Park J.; Yan M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46 (1), 181–189. 10.1021/ar300172h. PubMed DOI

Liao L.; Peng H.; Liu Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI

Bakandritsos A.; Pykal M.; Błonski P.; Jakubec P.; Chronopoulos D. D.; Polakova K.; Georgakilas V.; Cepe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zboril R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC

Heng Cheong Y.; Nasir M. Z. M.; Bakandritsos A.; Pykal M.; Jakubec P.; Zbořil R.; Otyepka M.; Pumera M. Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem 2019, 6, 229–234. 10.1002/celc.201800675. DOI

Mosconi D.; Blanco M.; Gatti T.; Calvillo L.; Otyepka M.; Bakandritsos A.; Menna E.; Agnoli S.; Granozzi G. Arene CH Insertion Catalyzed by Ferrocene Covalently Heterogenized on Graphene Acid. Carbon 2019, 143, 318–328. 10.1016/j.carbon.2018.11.010. DOI

Bertheussen E.; Verdaguer-Casadevall A.; Ravasio D.; Montoya J. H.; Trimarco D. B.; Roy C.; Meier S.; Wendland J.; Nørskov J. K.; Stephens I. E. L.; et al. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. Angew. Chem., Int. Ed. 2016, 55, 1450–1454. 10.1002/anie.201508851. PubMed DOI PMC

Szabó T.; Berkesi O.; Forgó P.; Josepovits K.; Sanakis Y.; Petridis D.; Dékány I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18 (11), 2740–2749. 10.1021/cm060258+. DOI

Mayo D. W.Characteristic Frequencies of Aromatic Compounds (Group Frequencies of Arenes). In Course Notes on the Interpretation of Infrared and Raman Spectra; Dana W. M., Foil A. M., Robert W. H., Eds.; John Wiley & Sons, Inc., 2004; pp 101–140.

Hanefeld U.; Gardossi L.; Magner E. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 2009, 38 (2), 453–468. 10.1039/B711564B. PubMed DOI

Mohamad N. R.; Marzuki N. H. C.; Buang N. A.; Huyop F.; Wahab R. A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29 (2), 205–220. 10.1080/13102818.2015.1008192. PubMed DOI PMC

Trevan M. D.Enzyme Immobilization by Covalent Bonding. In New Protein Techniques; Humana Press: NJ, 1988; pp 495–510. PubMed

Zhao F.; Li H.; Wang X.; Wu L.; Hou T.; Guan J.; Jiang Y.; Xu H.; Mu X. CRGO/Alginate Microbeads: An Enzyme Immobilization System and Its Potential Application for a Continuous Enzymatic Reaction. J. Mater. Chem. B 2015, 3 (48), 9315–9322. 10.1039/C5TB01508A. PubMed DOI

Won K.; Kim S.; Kim K. J.; Park H. W.; Moon S. J. Optimization of Lipase Entrapment in Ca-Alginate Gel Beads. Process Biochem. 2005, 40 (6), 2149–2154. 10.1016/j.procbio.2004.08.014. DOI

Dibenedetto A.; Stufano P.; Macyk W.; Baran T.; Fragale C.; Costa M.; Aresta M. Hybrid Technologies for an Enhanced Carbon Recycling Based on the Enzymatic Reduction of CO2 to Methanol in Water: Chemical and Photochemical NADH Regeneration. ChemSusChem 2012, 5 (2), 373–378. 10.1002/cssc.201100484. PubMed DOI

Winkelman J. G. M.; Voorwinde O. K.; Ottens M.; Beenackers A. A. C. M.; Janssen L. P. B. M. Kinetics and Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57 (19), 4067–4076. 10.1016/S0009-2509(02)00358-5. DOI

Ma K.; Yehezkeli O.; Park E.; Cha J. N. Enzyme Mediated Increase in Methanol Production from Photoelectrochemical Cells and CO2. ACS Catal. 2016, 6 (10), 6982–6986. 10.1021/acscatal.6b02524. DOI

Luo J.; Meyer A. S.; Mateiu R. V.; Pinelo M. Cascade Catalysis in Membranes with Enzyme Immobilization for Multi-Enzymatic Conversion of CO2 to Methanol. New Biotechnol. 2015, 32 (3), 319–327. 10.1016/j.nbt.2015.02.006. PubMed DOI

Zhang W.; Qin Q.; Dai L.; Qin R.; Zhao X.; Chen X.; Ou D.; Chen J.; Chuong T. T.; Wu B.; et al. Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO 2 Nanosheets with Abundant Pd-O-Sn Interfaces. Angew. Chem., Int. Ed. 2018, 57 (30), 9475–9479. 10.1002/anie.201804142. PubMed DOI

Yang H. P.; Yue Y. N.; Qin S.; Wang H.; Lu J. X. Selective Electrochemical Reduction of CO2 to Different Alcohol Products by an Organically Doped Alloy Catalyst. Green Chem. 2016, 18 (11), 3216–3220. 10.1039/C6GC00091F. DOI

Irfan Malik M.; Malaibari Z. O.; Atieh M.; Abussaud B. Electrochemical Reduction of CO2 to Methanol over MWCNTs Impregnated with Cu2O. Chem. Eng. Sci. 2016, 152, 468–477. 10.1016/j.ces.2016.06.035. DOI

Andrews E.; Ren M.; Wang F.; Zhang Z.; Sprunger P.; Kurtz R.; Flake J. Electrochemical Reduction of CO2 at Cu Nanocluster/(1010) ZnO Electrodes. J. Electrochem. Soc. 2013, 160 (11), H841.10.1149/2.105311jes. DOI

Kuhl K. P.; Hatsukade T.; Cave E. R.; Abram D. N.; Kibsgaard J.; Jaramillo T. F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136 (40), 14107–14113. 10.1021/ja505791r. PubMed DOI

Jiwanti P. K.; Natsui K.; Nakata K.; Einaga Y. Selective Production of Methanol by the Electrochemical Reduction of CO2 on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution. RSC Adv. 2016, 6 (104), 102214–102217. 10.1039/C6RA20466J. DOI

Campbell A. S.; Jeong Y. J.; Geier S. M.; Koepsel R. R.; Russell A. J.; Islam M. F. Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes. ACS Appl. Mater. Interfaces 2015, 7 (7), 4056–4065. 10.1021/am507801x. PubMed DOI

Shen F.; Cao X.; Pankratov D.; Zhang J.; Chi Q. Nanoengineering of Graphene-Supported Functional Composites for Performance-Enhanced Enzymatic Biofuel Cells. Graphene Bioelectron. 2018, 219–240. 10.1016/B978-0-12-813349-1.00010-X. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...