Immobilized Enzymes on Graphene as Nanobiocatalyst
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
31816230
PubMed Central
PMC6953471
DOI
10.1021/acsami.9b17777
Knihovny.cz E-resources
- Keywords
- bioelectrocatalysis, carbon dioxide reduction, enzyme catalysis, enzyme immobilization, graphene, methanol,
- MeSH
- Biocatalysis * MeSH
- Enzymes, Immobilized chemistry MeSH
- Graphite chemistry MeSH
- Methanol chemical synthesis MeSH
- Carbon Dioxide chemistry MeSH
- Oxidation-Reduction MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Enzymes, Immobilized MeSH
- Graphite MeSH
- Methanol MeSH
- Carbon Dioxide MeSH
Using enzymes as bioelectrocatalysts is an important step toward the next level of biotechnology for energy production. In such biocatalysts, a sacrificial cofactor as an electron and proton source is needed. This is a great obstacle for upscaling, due to cofactor instability and product separation issues, which increase the costs. Here, we report a cofactor-free electroreduction of CO2 to a high energy density chemical (methanol) catalyzed by enzyme-graphene hybrids. The biocatalyst consists of dehydrogenases covalently bound on a well-defined carboxyl graphene derivative, serving the role of a conductive nanoplatform. This nanobiocatalyst achieves reduction of CO2 to methanol at high current densities, which remain unchanged for at least 20 h of operation, without production of other soluble byproducts. It is thus shown that critical improvements on the stability and rate of methanol production at a high Faradaic efficiency of 12% are possible, due to the effective electrochemical process from the electrode to the enzymes via the graphene platform.
See more in PubMed
Baede A. P. M.; van der Linden P.; Verbruggen A.. Annex II to IPCC Fourth Assessment Report; Cambridge University Press, 2007.
Lüthi D.; Le Floch M.; Bereiter B.; Blunier T.; Barnola J.-M.; Siegenthaler U.; Raynaud D.; Jouzel J.; Fischer H.; Kawamura K.; et al. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453 (7193), 379–382. 10.1038/nature06949. PubMed DOI
Arrhenius S. XXXI. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philos. Mag. S. 5 1896, 41 (251), 237–276. 10.1080/14786449608620846. DOI
Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC
Aresta M.; Dibenedetto A. Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges. Dalt. Trans. 2007, (28), 2975–2992. 10.1039/b700658f. PubMed DOI
Kondratenko E. V.; Mul G.; Baltrusaitis J.; Larrazábal G. O.; Pérez-Ramírez J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci. 2013, 6 (11), 3112–3135. 10.1039/c3ee41272e. DOI
Li H.; Opgenorth P. H.; Wernick D. G.; Rogers S.; Wu T.-Y.; Higashide W.; Malati P.; Huo Y.-X.; Cho K. M.; Liao J. C. Integrated Electromicrobial Conversion of CO2 to Higher Alcohols. Science 2012, 335 (6076), 1596.10.1126/science.1217643. PubMed DOI
Aresta M.; Dibenedetto A.. Key Issues in Carbon Dioxide Utilization as a Building Block for Molecular Organic Compounds in the Chemical Industry. CO2 Conversion and Utilization; American Chemical Society, 2002; Chapter 4.
Olah G. A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem., Int. Ed. 2005, 44 (18), 2636–2639. 10.1002/anie.200462121. PubMed DOI
Olah G. A.; Goeppert A.; Prakash G. K. S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74 (2), 487–498. 10.1021/jo801260f. PubMed DOI
Schlager S.; Dibenedetto A.; Aresta M.; Apaydin D. H.; Dumitru L. M.; Neugebauer H.; Sariciftci N. S. Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide Using Enzymes. Energy Technol. 2017, 5 (6), 812–821. 10.1002/ente.201600610. PubMed DOI PMC
Apaydin D. H.; Schlager S.; Portenkirchner E.; Sariciftci N. S. Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2. ChemPhysChem 2017, 18 (22), 3094–3116. 10.1002/cphc.201700148. PubMed DOI PMC
Singh R. K.; Singh R.; Sivakumar D.; Kondaveeti S.; Kim T.; Li J.; Sung B. H.; Cho B.-K.; Kim D. R.; Kim S. C.; et al. Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction. ACS Catal. 2018, 8 (12), 11085–11093. 10.1021/acscatal.8b02646. DOI
Ji X.; Su Z.; Wang P.; Ma G.; Zhang S. Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes. ACS Nano 2015, 9 (4), 4600–4610. 10.1021/acsnano.5b01278. PubMed DOI
Peterson A. A.; Nørskov J. K. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251–258. 10.1021/jz201461p. DOI
Hori Y.Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer New York: New York, 2008; pp 89–189.
Kuhl K. P.; Cave E. R.; Abram D. N.; Jaramillo T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 7050.10.1039/c2ee21234j. DOI
Kumar B.; Llorente M.; Froehlich J.; Dang T.; Sathrum A.; Kubiak C. P. Photochemical and Photoelectrochemical Reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63 (1), 541–569. 10.1146/annurev-physchem-032511-143759. PubMed DOI
Hawecker J.; Lehn J.-M.; Ziessel R. Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2’-Bipyridine)Tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. Helv. Chim. Acta 1986, 69 (8), 1990–2012. 10.1002/hlca.19860690824. DOI
Lehn J. M.; Ziessel R. Photochemical Generation of Carbon Monoxide and Hydrogen by Reduction of Carbon Dioxide and Water under Visible Light Irradiation. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (2), 701–704. 10.1073/pnas.79.2.701. PubMed DOI PMC
Rakowski Dubois M.; Dubois D. L. Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation. Acc. Chem. Res. 2009, 42 (12), 1974–1982. 10.1021/ar900110c. PubMed DOI
Schuchmann K.; Müller V. Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase. Science 2013, 342 (6164), 1382–1385. 10.1126/science.1244758. PubMed DOI
Chiu S.-Y.; Kao C.-Y.; Chen C.-H.; Kuan T.-C.; Ong S.-C.; Lin C.-S. Reduction of CO2 by a High-Density Culture of Chlorella Sp. in a Semicontinuous Photobioreactor. Bioresour. Technol. 2008, 99 (9), 3389–3396. 10.1016/j.biortech.2007.08.013. PubMed DOI
Albo J.; Sáez A.; Solla-Gullón J.; Montiel V.; Irabien A. Production of Methanol from CO2 Electroreduction at Cu2O and Cu2O/ZnO-Based Electrodes in Aqueous Solution. Appl. Catal., B 2015, 176–177, 709–717. 10.1016/j.apcatb.2015.04.055. DOI
Albo J.; Irabien A. Cu2O-Loaded Gas Diffusion Electrodes for the Continuous Electrochemical Reduction of CO2 to Methanol. J. Catal. 2016, 343, 232–239. 10.1016/j.jcat.2015.11.014. DOI
Yang D.; Zhu Q.; Chen C.; Liu H.; Liu Z.; Zhao Z.; Zhang X.; Liu S.; Han B. Selective Electroreduction of Carbon Dioxide to Methanol on Copper Selenide Nanocatalysts. Nat. Commun. 2019, 10 (1), 677.10.1038/s41467-019-08653-9. PubMed DOI PMC
Studt F.; Sharafutdinov I.; Abild-Pedersen F.; Elkjær C. F.; Hummelshøj J. S.; Dahl S.; Chorkendorff I.; Nørskov J. K. Discovery of a Ni-Ga Catalyst for Carbon Dioxide Reduction to Methanol. Nat. Chem. 2014, 6 (4), 320–324. 10.1038/nchem.1873. PubMed DOI
Qiao J.; Liu Y.; Hong F.; Zhang J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. 10.1039/C3CS60323G. PubMed DOI
Appel A. M.; Bercaw J. E.; Bocarsly A. B.; Dobbek H.; DuBois D. L.; Dupuis M.; Ferry J. G.; Fujita E.; Hille R.; Kenis P. J. A.; et al. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chem. Rev. 2013, 113 (8), 6621–6658. 10.1021/cr300463y. PubMed DOI PMC
Aresta M.; Dibenedetto A.; Pastore C. Biotechnology to Develop Innovative Syntheses Using CO2. Environ. Chem. Lett. 2005, 3 (3), 113–117. 10.1007/s10311-005-0009-y. DOI
Mandler D.; Willner I. Photochemical Fixation of Carbon Dioxide: Enzymic Photosynthesis of Malic, Aspartic, Isocitric, and Formic Acids in Artificial Media. J. Chem. Soc., Perkin Trans. 2 1988, (6), 997.10.1039/p29880000997. DOI
Parkinson B. A.; Weaver P. F. Photoelectrochemical Pumping of Enzymatic 2 Reduction. Nature 1984, 309 (5964), 148–149. 10.1038/309148a0. DOI
Andreesen J. R.; Ljungdahl L. G. Formate Dehydrogenase of Clostridium Thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme. J. Bacteriol. 1973, 116 (2), 867–873. PubMed PMC
Seelbach K.; Riebel B.; Hummel W.; Kula M.-R.; Tishkov V. I.; Egorov A. M.; Wandrey C.; Kragl U. A Novel, Efficient Regenerating Method of NADPH Using a New Formate Dehydrogenase. Tetrahedron Lett. 1996, 37 (9), 1377–1380. 10.1016/0040-4039(96)00010-X. DOI
Obert R.; Dave B. C. Enzymatic Conversion of Carbon Dioxide to Methanol: Enhanced Methanol Production in Silica Sol-Gel Matrices. J. Am. Chem. Soc. 1999, 121, 12192–12193. 10.1021/ja991899r. DOI
Singh R. K. R.; Singh R. K. R.; Sivakumar D.; Kondaveeti S.; Kim T.; Li J.; Sung B. H.; Cho B.-K.; Kim D. R.; Kim S. C.; et al. Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction. ACS Catal. 2018, 8 (12), 11085–11093. 10.1021/acscatal.8b02646. DOI
Schlager S.; Dumitru L. M.; Haberbauer M.; Fuchsbauer A.; Neugebauer H.; Hiemetsberger D.; Wagner A.; Portenkirchner E.; Sariciftci N. S. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode. ChemSusChem 2016, 9 (6), 631–635. 10.1002/cssc.201501496. PubMed DOI PMC
Schlager S.; Neugebauer H.; Haberbauer M.; Hinterberger G.; Sariciftci N. S. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol. ChemCatChem 2015, 7 (6), 967–971. 10.1002/cctc.201402932. PubMed DOI PMC
Rabaey K.; Rozendal R. A. Microbial Electrosynthesis — Revisiting the Electrical Route for Microbial Production. Nat. Rev. Microbiol. 2010, 8 (10), 706–716. 10.1038/nrmicro2422. PubMed DOI
Amao Y.; Shuto N. Formate Dehydrogenase-Viologen-Immobilized Electrode for CO2 Conversion, for Development of an Artificial Photosynthesis System. Res. Chem. Intermed. 2014, 40 (9), 3267–3276. 10.1007/s11164-014-1832-1. DOI
Reda T.; Plugge C. M.; Abram N. J.; Hirst J. Reversible Interconversion of Carbon Dioxide and Formate by an Electroactive Enzyme. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (31), 10654–10658. 10.1073/pnas.0801290105. PubMed DOI PMC
Lima F.; Maia G. Direct Electron Transfer from Alcohol Dehydrogenase. RSC Adv. 2014, 4 (43), 22575–22588. 10.1039/c4ra02946a. DOI
Zhao X.; Mai Z.; Kang X.; Zou X. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Based on Clay-Chitosan-Gold Nanoparticle Nanocomposite. Biosens. Bioelectron. 2008, 23, 1032–1038. 10.1016/j.bios.2007.10.012. PubMed DOI
Zhou Y.; Yang H.; Chen H.-Y. Direct Electrochemistry and Reagentless Biosensing of Glucose Oxidase Immobilized on Chitosan Wrapped Single-Walled Carbon Nanotubes. Talanta 2008, 76, 419–423. 10.1016/j.talanta.2008.03.028. PubMed DOI
Shan D.; Wang S.; Xue H.; Cosnier S. Direct Electrochemistry and Electrocatalysis of Hemoglobin Entrapped in Composite Matrix Based on Chitosan and CaCO3 Nanoparticles. Electrochem. Commun. 2007, 9 (4), 529–534. 10.1016/j.elecom.2006.10.032. DOI
Liu J.; Guo C.; Li C. M.; Li Y.; Chi Q.; Huang X.; Liao L.; Yu T. Carbon-Decorated ZnO Nanowire Array: A Novel Platform for Direct Electrochemistry of Enzymes and Biosensing Applications. Electrochem. Commun. 2009, 11, 202–205. 10.1016/j.elecom.2008.11.009. DOI
Zang J.; Li C. M.; Cui X.; Wang J.; Sun X.; Dong H.; Sun C. Q. Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis 2007, 19 (9), 1008–1014. 10.1002/elan.200603808. DOI
Jia J.; Wang B.; Wu A.; Cheng G.; Li Z.; Dong S. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol–Gel Network. Anal. Chem. 2002, 74 (9), 2217–2223. 10.1021/ac011116w. PubMed DOI
Zhang Q.; Zhang L.; Liu B.; Lu X.; Li J. Assembly of Quantum Dots-Mesoporous Silicate Hybrid Material for Protein Immobilization and Direct Electrochemistry. Biosens. Bioelectron. 2007, 23, 695–700. 10.1016/j.bios.2007.08.008. PubMed DOI
Nadzhafova O.; Etienne M.; Walcarius A. Direct Electrochemistry of Hemoglobin and Glucose Oxidase in Electrodeposited Sol-Gel Silica Thin Films on Glassy Carbon. Electrochem. Commun. 2007, 9 (5), 1189–1195. 10.1016/j.elecom.2007.01.010. DOI
Blankenship R. E.; Tiede D. M.; Barber J.; Brudvig G. W.; Fleming G.; Ghirardi M.; Gunner M. R.; Junge W.; Kramer D. M.; Melis A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332 (6031), 805–809. 10.1126/science.1200165. PubMed DOI
Zhang J. J.; Zhang F.; Yang H.; Huang X.; Liu H.; Zhang J. J.; Guo S. Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26 (9), 6083–6085. 10.1021/la904014z. PubMed DOI
Zuo X.; He S.; Li D.; Peng C.; Huang Q.; Song S.; Fan C. Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces. Langmuir 2010, 26 (3), 1936–1939. 10.1021/la902496u. PubMed DOI
Liu Y.; Yu D.; Zeng C.; Miao Z.; Dai L. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir 2010, 26 (9), 6158–6160. 10.1021/la100886x. PubMed DOI
Shao Y.; Wang J.; Wu H.; Liu J.; Aksay I. A.; Lin Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22 (10), 1027–1036. 10.1002/elan.200900571. DOI
Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27 (14), 2305–2310. 10.1002/adma.201500094. PubMed DOI
Liu C.; Alwarappan S.; Chen Z.; Kong X.; Li C.-Z. Membraneless Enzymatic Biofuel Cells Based on Graphene Nanosheets. Biosens. Bioelectron. 2010, 25 (7), 1829–1833. 10.1016/j.bios.2009.12.012. PubMed DOI
Prasad K. P.; Chen Y.; Chen P. Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuel Cells. ACS Appl. Mater. Interfaces 2014, 6 (5), 3387–3393. 10.1021/am405432b. PubMed DOI
Walcarius A.; Minteer S. D.; Wang J.; Lin Y.; Merkoçi A. Materials for Biology and Medicine Nanomaterials for Bio-Functionalized Electrodes: Recent Trends. J. Mater. Chem. B 2013, 1, 4878–4908. 10.1039/c3tb20881h. PubMed DOI
Guo K.; Qian K.; Zhang S.; Kong J.; Yu C.; Liu B. Bio-Electrocatalysis of NADH and Ethanol Based on Graphene Sheets Modified Electrodes. Talanta 2011, 85 (2), 1174–1179. 10.1016/j.talanta.2011.05.038. PubMed DOI
Besharati Vineh M.; Saboury A. A.; Poostchi A. A.; Rashidi A. M.; Parivar K. Stability and Activity Improvement of Horseradish Peroxidase by Covalent Immobilization on Functionalized Reduced Graphene Oxide and Biodegradation of High Phenol Concentration. Int. J. Biol. Macromol. 2018, 106, 1314–1322. 10.1016/j.ijbiomac.2017.08.133. PubMed DOI
Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the Structure of Graphite Oxide: Absolute Quantification of Functional Groups via Selective Labelling †. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI
Marcano D. C.; Kosynkin D. V.; Berlin J. M.; Sinitskii A.; Sun Z.; Slesarev A.; Alemany L. B.; Lu W.; Tour J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814. 10.1021/nn1006368. PubMed DOI
Lerf A.; He H.; Forster M.; Klinowski J. Structure of Graphite Oxide Revisited∥. J. Phys. Chem. B 1998, 102 (23), 4477–4482. 10.1021/jp9731821. DOI
Park J.; Yan M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46 (1), 181–189. 10.1021/ar300172h. PubMed DOI
Liao L.; Peng H.; Liu Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI
Bakandritsos A.; Pykal M.; Błonski P.; Jakubec P.; Chronopoulos D. D.; Polakova K.; Georgakilas V.; Cepe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zboril R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Heng Cheong Y.; Nasir M. Z. M.; Bakandritsos A.; Pykal M.; Jakubec P.; Zbořil R.; Otyepka M.; Pumera M. Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem 2019, 6, 229–234. 10.1002/celc.201800675. DOI
Mosconi D.; Blanco M.; Gatti T.; Calvillo L.; Otyepka M.; Bakandritsos A.; Menna E.; Agnoli S.; Granozzi G. Arene CH Insertion Catalyzed by Ferrocene Covalently Heterogenized on Graphene Acid. Carbon 2019, 143, 318–328. 10.1016/j.carbon.2018.11.010. DOI
Bertheussen E.; Verdaguer-Casadevall A.; Ravasio D.; Montoya J. H.; Trimarco D. B.; Roy C.; Meier S.; Wendland J.; Nørskov J. K.; Stephens I. E. L.; et al. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. Angew. Chem., Int. Ed. 2016, 55, 1450–1454. 10.1002/anie.201508851. PubMed DOI PMC
Szabó T.; Berkesi O.; Forgó P.; Josepovits K.; Sanakis Y.; Petridis D.; Dékány I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18 (11), 2740–2749. 10.1021/cm060258+. DOI
Mayo D. W.Characteristic Frequencies of Aromatic Compounds (Group Frequencies of Arenes). In Course Notes on the Interpretation of Infrared and Raman Spectra; Dana W. M., Foil A. M., Robert W. H., Eds.; John Wiley & Sons, Inc., 2004; pp 101–140.
Hanefeld U.; Gardossi L.; Magner E. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 2009, 38 (2), 453–468. 10.1039/B711564B. PubMed DOI
Mohamad N. R.; Marzuki N. H. C.; Buang N. A.; Huyop F.; Wahab R. A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29 (2), 205–220. 10.1080/13102818.2015.1008192. PubMed DOI PMC
Trevan M. D.Enzyme Immobilization by Covalent Bonding. In New Protein Techniques; Humana Press: NJ, 1988; pp 495–510. PubMed
Zhao F.; Li H.; Wang X.; Wu L.; Hou T.; Guan J.; Jiang Y.; Xu H.; Mu X. CRGO/Alginate Microbeads: An Enzyme Immobilization System and Its Potential Application for a Continuous Enzymatic Reaction. J. Mater. Chem. B 2015, 3 (48), 9315–9322. 10.1039/C5TB01508A. PubMed DOI
Won K.; Kim S.; Kim K. J.; Park H. W.; Moon S. J. Optimization of Lipase Entrapment in Ca-Alginate Gel Beads. Process Biochem. 2005, 40 (6), 2149–2154. 10.1016/j.procbio.2004.08.014. DOI
Dibenedetto A.; Stufano P.; Macyk W.; Baran T.; Fragale C.; Costa M.; Aresta M. Hybrid Technologies for an Enhanced Carbon Recycling Based on the Enzymatic Reduction of CO2 to Methanol in Water: Chemical and Photochemical NADH Regeneration. ChemSusChem 2012, 5 (2), 373–378. 10.1002/cssc.201100484. PubMed DOI
Winkelman J. G. M.; Voorwinde O. K.; Ottens M.; Beenackers A. A. C. M.; Janssen L. P. B. M. Kinetics and Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57 (19), 4067–4076. 10.1016/S0009-2509(02)00358-5. DOI
Ma K.; Yehezkeli O.; Park E.; Cha J. N. Enzyme Mediated Increase in Methanol Production from Photoelectrochemical Cells and CO2. ACS Catal. 2016, 6 (10), 6982–6986. 10.1021/acscatal.6b02524. DOI
Luo J.; Meyer A. S.; Mateiu R. V.; Pinelo M. Cascade Catalysis in Membranes with Enzyme Immobilization for Multi-Enzymatic Conversion of CO2 to Methanol. New Biotechnol. 2015, 32 (3), 319–327. 10.1016/j.nbt.2015.02.006. PubMed DOI
Zhang W.; Qin Q.; Dai L.; Qin R.; Zhao X.; Chen X.; Ou D.; Chen J.; Chuong T. T.; Wu B.; et al. Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO 2 Nanosheets with Abundant Pd-O-Sn Interfaces. Angew. Chem., Int. Ed. 2018, 57 (30), 9475–9479. 10.1002/anie.201804142. PubMed DOI
Yang H. P.; Yue Y. N.; Qin S.; Wang H.; Lu J. X. Selective Electrochemical Reduction of CO2 to Different Alcohol Products by an Organically Doped Alloy Catalyst. Green Chem. 2016, 18 (11), 3216–3220. 10.1039/C6GC00091F. DOI
Irfan Malik M.; Malaibari Z. O.; Atieh M.; Abussaud B. Electrochemical Reduction of CO2 to Methanol over MWCNTs Impregnated with Cu2O. Chem. Eng. Sci. 2016, 152, 468–477. 10.1016/j.ces.2016.06.035. DOI
Andrews E.; Ren M.; Wang F.; Zhang Z.; Sprunger P.; Kurtz R.; Flake J. Electrochemical Reduction of CO2 at Cu Nanocluster/(1010) ZnO Electrodes. J. Electrochem. Soc. 2013, 160 (11), H841.10.1149/2.105311jes. DOI
Kuhl K. P.; Hatsukade T.; Cave E. R.; Abram D. N.; Kibsgaard J.; Jaramillo T. F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136 (40), 14107–14113. 10.1021/ja505791r. PubMed DOI
Jiwanti P. K.; Natsui K.; Nakata K.; Einaga Y. Selective Production of Methanol by the Electrochemical Reduction of CO2 on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution. RSC Adv. 2016, 6 (104), 102214–102217. 10.1039/C6RA20466J. DOI
Campbell A. S.; Jeong Y. J.; Geier S. M.; Koepsel R. R.; Russell A. J.; Islam M. F. Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes. ACS Appl. Mater. Interfaces 2015, 7 (7), 4056–4065. 10.1021/am507801x. PubMed DOI
Shen F.; Cao X.; Pankratov D.; Zhang J.; Chi Q. Nanoengineering of Graphene-Supported Functional Composites for Performance-Enhanced Enzymatic Biofuel Cells. Graphene Bioelectron. 2018, 219–240. 10.1016/B978-0-12-813349-1.00010-X. DOI
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Human virus detection with graphene-based materials
New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative