Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ID:90254
e-INFRA CZ
CZ.10.03.01/00/22_003/0000048
European Union
PubMed
39107963
PubMed Central
PMC11497090
DOI
10.1002/advs.202307583
Knihovny.cz E-zdroje
- Klíčová slova
- EQCM, Graphene derivatives, confined water molecules, covalent functionalization, energy storage,
- Publikační typ
- časopisecké články MeSH
Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (─O), fluorine (─F), nitrile (─C≡N), carboxylic (─COOH), carbonyl (─C═O), nitrogen (─N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications.
Zobrazit více v PubMed
Trahey L., Brushett F. R., Balsara N. P., Ceder G., Cheng L., Chiang Y. M., Hahn N. T., Ingram B. J., Minteer S. D., Moore J. S., Mueller K. T., Nazar L. F., Persson K. A., Siegel D. J., Xu K., Zavadil K. R., Srinivasan V., Crabtree G. W., Proc. Natl. Acad. Sci. 2020, 117, 12550. PubMed PMC
Höök M., Tang X., Energy Policy 2013, 52, 797.
Lukatskaya M. R., Dunn B., Gogotsi Y., Nat. Commun. 2016, 7, 12647. PubMed PMC
Chu S., Majumdar A., Nature 2012, 488, 294. PubMed
Crabtree G., Nature 2015, 526, S92. PubMed
Goodenough J. B., Manthiram A., MRS Commun. 2014, 4, 135.
Simon P., Gogotsi Y., Dunn B., Science 2014, 343, 1210. PubMed
Wang X., Lu X., Liu B., Chen D., Tong Y., Shen G., Adv. Mater. 2014, 26, 4763. PubMed
Asenbauer J., Eisenmann T., Kuenzel M., Kazzazi A., Chen Z., Bresser D., Sustainable Energy and Fuels 2020, 4, 5387.
Novoselov K. S., Fal'Ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., Nature 2012, 490, 192. PubMed
Kong W., Kum H., Bae S. H., Shim J., Kim H., Kong L., Meng Y., Wang K., Kim C., Kim J., Nat. Nanotechnol. 2019, 14, 927. PubMed
Ambrosi A., Chua C. K., Bonanni A., Pumera M., Chem. Rev. 2014, 114, 7150. PubMed
Pumera M., Sofer Z., Chem. Soc. Rev. 2017, 46, 4450. PubMed
Inagaki M., Kang F., J. Mater. Chem. A 2014, 2, 13193.
Hrubý V., Zaoralová D., Medveď M., Bakandritsos A., Zbořil R., Otyepka M., Nanoscale 2022, 14, 13490. PubMed PMC
Shao Y., El‐Kady M. F., Wang L. J., Zhang Q., Li Y., Wang H., Mousavi M. F., Kaner R. B., Chem. Soc. Rev. 2015, 44, 3639. PubMed
Liang M., Zhi L., J. Mater. Chem. 2009, 19, 5871.
Akshay Kumar K. P., Ghosh K., Alduhaish O., Pumera M., Electrochem. Commun. 2021, 122, 106890.
Sun Y., Li C., Xu Y., Bai H., Yao Z., Shi G., Chem. Commun. 2010, 46, 4740. PubMed
Kumar K. P. A., Ghosh K., Alduhaish O., Pumera M., Electrochem. Commun. 2020, 120, 106827.
Xu K., Merlet C., Lin Z., Shao H., Taberna P., Miao L., Jiang J., Zhu J., Simon P., Energy Storage Mater. 2020, 33, 460.
Cao H., Peng X., Zhao M., Liu P., Xu B., Guo J., RSC Adv. 2018, 8, 2858. PubMed PMC
Levi M. D., Levy N., Sigalov S., Salitra G., Aurbach D., Maier J., J. Am. Chem. Soc. 2010, 132, 13220. PubMed
Zhang Y., Huang H., Ning X., Li C., Fan Z., Pan L., Carbon 2022, 195, 341.
Shpigel N., Chakraborty A., Malchik F., Bergman G., Nimkar A., Gavriel B., Turgeman M., Hong C. N., Lukatskaya M. R., Levi M. D., Gogotsi Y., Major D. T., Aurbach D., J. Am. Chem. Soc. 2021, 143, 12552. PubMed
Shpigel N., Levi M. D., Sigalov S., Mathis T. S., Gogotsi Y., Aurbach D., J. Am. Chem. Soc. 2018, 140, 8910. PubMed
Sudare T., Yamaguchi T., Ueda M., Shiiba H., Tanaka H., Tipplook M., Hayashi F., Teshima K., Nat. Commun. 2022, 13, 6448. PubMed PMC
Geim A. K., Science 2009, 324, 1530. PubMed
Chen D., Tang L., Li J., Chem. Soc. Rev. 2010, 39, 3157. PubMed
Geim A. K., Novoselov K. S., Nat. Mater. 2007, 183. PubMed
Kumar K. P. A., Alduhaish O., Adil S. F., Pumera M., Adv. Mater. Interfaces 2022, 9, 2102317.
Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev. 2012, 112, 6156. PubMed
Xin L., Yang F., Rasouli S., Qiu Y., Li Z. F., Uzunoglu A., Sun C. J., Liu Y., Ferreira P., Li W., Ren Y., Stanciu L. A., Xie J., ACS Catal. 2016, 6, 2642.
Li R., Wei Z., Gou X., ACS Catal. 2015, 5, 4133.
Wang L., Sofer Z., Pumera M., ACS Nano 2020, 14, 21. PubMed
Liu H., Liu Y., Zhu D., J. Mater. Chem. 2011, 21, 3335.
Park J., Yan M., Acc. Chem. Res. 2013, 46, 181. PubMed
Liao L., Peng H., Liu Z., J. Am. Chem. Soc. 2014, 136, 12194. PubMed
Chua C. K., Pumera M., Chem. Soc. Rev. 2014, 43, 291. PubMed
Chua C. K., Pumera M., ACS Nano 2015, 9, 4193. PubMed
Chronopoulos D. D., Bakandritsos A., Pykal M., Zbořil R., Otyepka M., Appl. Mater. Today 2017, 9, 60. PubMed PMC
Robinson J. T., Burgess J. S., Junkermeier C. E., Badescu S. C., Reinecke T. L., Perkins F. K., Zalalutdniov M. K., Baldwin J. W., Culbertson J. C., Sheehan P. E., Snow E. S., Nano Lett. 2010, 10, 3001. PubMed
Hrubý V., Šedajová V., Jakubec P., Bakandritsos A., Zbořil R., Otyepka M., Power Electronic Devices and Components 2024, 7, 100058.
Nair R. R., Ren W., Jalil R., Riaz I., Kravets V. G., Britnell L., Blake P., Schedin F., Mayorov A. S., Yuan S., Katsnelson M. I., Cheng H. M., Strupinski W., Bulusheva L. G., Okotrub A. V., Grigorieva I. V., Grigorenko A. N., Novoselov K. S., Geim A. K., Small 2010, 6, 2877. PubMed
Feng W., Long P., Feng Y., Li Y., Adv. Sci. 2016, 3, 1500413. PubMed PMC
An H., Li Y., Long P., Gao Y., Qin C., Cao C., Feng Y., Feng W., J. Power Sources 2016, 312, 146.
Kong L., Li Y., Peng C., Sun L., Wang K., Liu Y., Feng W., Nano Energy 2022, 104, 107905.
Chen X., Fan K., Liu Y., Li Y., Liu X., Feng W., Wang X., Adv. Mater. 2022, 34, 2101665. PubMed
Sun L., Li Y., Feng W., Small Methods 2023, 7, 2201152. PubMed
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC
Obraztsov I., Bakandritsos A., Šedajová V., Langer R., Jakubec P., Zoppellaro G., Pykal M., Presser V., Otyepka M., Zbořil R., Adv. Energy Mater. 2022, 12, 2103010.
Jankovský O., Nováček M., Luxa J., Sedmidubský D., Fila V., Pumera M., Sofer Z., Chem. ‐ Eur. J. 2016, 22, 17416. PubMed
Lenarda A., Bakandritsos A., Bevilacqua M., Tavagnacco C., Melchionna M., Naldoni A., Steklý T., Otyepka M., Zbořil R., Fornasiero P., ACS Omega 2019, 4, 19944. PubMed PMC
Šedajová V., Bakandritsos A., Błoński P., Medveď M., Langer R., Zaoralová D., Ugolotti J., Dzíbelová J., Jakubec P., Kupka V., Otyepka M., Energy Environ. Sci. 2022, 15, 740. PubMed PMC
Ohba T., J. Phys. Chem. C 2015, 119, 15185.
Chakraborty S., Kumar H., Dasgupta C., Maiti P. K., Acc. Chem. Res. 2017, 50, 2139. PubMed
Ruiz‐Barragan S., Sebastiani F., Schienbein P., Abraham J., Schwaab G., Nair R. R., Havenith M., Marx D., Phys. Chem. Chem. Phys. 2022, 24, 24734. PubMed
Keerthi A., Goutham S., You Y., Iamprasertkun P., Dryfe R. A. W., Geim A. K., Radha B., Nat. Commun. 2021, 12, 3092. PubMed PMC
Tsai W. Y., Taberna P. L., Simon P., J. Am. Chem. Soc. 2014, 136, 8722. PubMed
Ye J., Wu Y. C., Xu K., Ni K., Shu N., Taberna P. L., Zhu Y., Simon P., J. Am. Chem. Soc. 2019, 141, 16559. PubMed
Levi M. D., Sigalov S., Aurbach D., Daikhin L., J. Phys. Chem. C 2013, 117, 14876.
Ghosh K., Ng S., Lazar P., Padinjareveetil A. K. K., Michalička J., Pumera M., Adv. Funct. Mater. 2024, 34, 2308793.
Niu L., Yang L., Yang J., Chen M., Zeng L., Duan P., Wu T., Pameté E., Presser V., Feng G., Ind. Chem. Mater. 2023, 1, 175.
Pasta M., Wessells C. D., Huggins R. A., Cui Y., Nat. Commun. 2012, 3, 1149. PubMed
Demir‐Cakan R., Palacin M. R., Croguennec L., J. Mater. Chem. A 2019, 7, 20519.
Goubaa H., Escobar‐Teran F., Ressam I., Gao W., El Kadib A., Lucas I. T., Raihane M., Lahcini M., Perrot H., Sel O., J. Phys. Chem. C 2017, 121, 9370.
Eigler S., Hirsch A., Angewandte Chemie – International Edition 2014, 53, 7720. PubMed
Dreyer D. R., Todd A. D., Bielawski C. W., Chem. Soc. Rev. 2014, 43, 5288. PubMed
Xu B., Yue S., Sui Z., Zhang X., Hou S., Cao G., Yang Y., Energy Environ. Sci. 2011, 4, 2826.
Gao W., Debiemme‐Chouvy C., Lahcini M., Perrot H., Sel O., Anal. Chem. 2019, 91, 2885. PubMed
Zhang Y., Liang Y., Dong H., Wang X., Yao Y., J. Electrochem. Soc. 2020, 167, 070558.
Levi M. D., Salitra G., Levy N., Aurbach D., Maier J., Nat. Mater. 2009, 8, 872. PubMed
Bo Z., Yang J., Qi H., Yan J., Cen K., Han Z., Energy Stor. Mater. 2020, 31, 64.
Zhang E., Wu Y. C., Shao H., Klimavicius V., Zhang H., Taberna P. L., Grothe J., Buntkowsky G., Xu F., Simon P., Kaskel S., J. Am. Chem. Soc. 2022, 144, 14217. PubMed
Wang S., Wang L., Zhang K., Zhu Z., Tao Z., Chen J., Nano Lett. 2013, 13, 4404. PubMed
Zhao Q., Wang J., Lu Y., Li Y., Liang G., Chen J., Angew. Chem., Int. Ed. 2016, 55, 12528. PubMed
Armand M., Grugeon S., Vezin H., Laruelle S., Ribière P., Poizot P., Tarascon J. M., Nat. Mater. 2009, 8, 120. PubMed
Islam M. S., Yagyu J., Sekine Y., Sawa S., Hayami S., Mater. Adv. 2022, 3, 3418.
Vermisoglou E. C., Jakubec P., Bakandritsos A., Kupka V., Pykal M., Šedajová V., Vlček J., Tomanec O., Scheibe M., Zbořil R., Otyepka M., ChemSusChem 2021, 14, 3904. PubMed PMC
Björneholm O., Hansen M. H., Hodgson A., Liu L. M., Limmer D. T., Michaelides A., Pedevilla P., Rossmeisl J., Shen H., Tocci G., Tyrode E., Walz M. M., Werner J., Bluhm H., Chem. Rev. 2016, 116, 7698. PubMed
Janeček J., Netz R. R., Langmuir 2007, 23, 8417. PubMed
Kelly C. P., Cramer C. J., Truhlar D. G., J. Phys. Chem. B 2006, 110, 16066. PubMed
Havrila M., Stadlbauer P., Islam B., Otyepka M., Šponer J., J. Chem. Theory Comput. 2017, 13, 3911. PubMed
Feng J., Graf M., Liu K., Ovchinnikov D., Dumcenco D., Heiranian M., Nandigana V., Aluru N. R., Kis A., Radenovic A., Nature 2016, 536, 197. PubMed
Bayly C. I., Cieplak P., Cornell W. D., Kollman P. A., J. Phys. Chem 1993, 97, 10269.
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem. 2005, 26, 1701. PubMed
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A., J. Am. Chem. Soc. 1995, 117, 5179.
Berendsen H. J. C., Grigera J. R., Straatsma T. P., Journal of Physical Chemistry 1987, 91, 6269.
Cheng A., Steele W. A., J. Chem. Phys. 1990, 92, 3858.
Joung I. S., Cheatham T. E., J. Phys. Chem. B 2008, 112, 9020. PubMed PMC
Bussi G., Donadio D., Parrinello M., J. Chem. Phys. 2007, 126, 014101. PubMed
Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., Dinola A., Haak J. R., J. Chem. Phys. 1984, 81, 3684.
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M., J. Comput. Chem. 1997, 18, 1463.
D. W. L ., CCP4 Newsletter On Protein Crystallography, 2002, 40.