Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes

. 2024 Oct ; 11 (39) : e2307583. [epub] 20240806

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39107963

Grantová podpora
ID:90254 e-INFRA CZ
CZ.10.03.01/00/22_003/0000048 European Union

Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (─O), fluorine (─F), nitrile (─C≡N), carboxylic (─COOH), carbonyl (─C═O), nitrogen (─N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications.

Zobrazit více v PubMed

Trahey L., Brushett F. R., Balsara N. P., Ceder G., Cheng L., Chiang Y. M., Hahn N. T., Ingram B. J., Minteer S. D., Moore J. S., Mueller K. T., Nazar L. F., Persson K. A., Siegel D. J., Xu K., Zavadil K. R., Srinivasan V., Crabtree G. W., Proc. Natl. Acad. Sci. 2020, 117, 12550. PubMed PMC

Höök M., Tang X., Energy Policy 2013, 52, 797.

Lukatskaya M. R., Dunn B., Gogotsi Y., Nat. Commun. 2016, 7, 12647. PubMed PMC

Chu S., Majumdar A., Nature 2012, 488, 294. PubMed

Crabtree G., Nature 2015, 526, S92. PubMed

Goodenough J. B., Manthiram A., MRS Commun. 2014, 4, 135.

Simon P., Gogotsi Y., Dunn B., Science 2014, 343, 1210. PubMed

Wang X., Lu X., Liu B., Chen D., Tong Y., Shen G., Adv. Mater. 2014, 26, 4763. PubMed

Asenbauer J., Eisenmann T., Kuenzel M., Kazzazi A., Chen Z., Bresser D., Sustainable Energy and Fuels 2020, 4, 5387.

Novoselov K. S., Fal'Ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., Nature 2012, 490, 192. PubMed

Kong W., Kum H., Bae S. H., Shim J., Kim H., Kong L., Meng Y., Wang K., Kim C., Kim J., Nat. Nanotechnol. 2019, 14, 927. PubMed

Ambrosi A., Chua C. K., Bonanni A., Pumera M., Chem. Rev. 2014, 114, 7150. PubMed

Pumera M., Sofer Z., Chem. Soc. Rev. 2017, 46, 4450. PubMed

Inagaki M., Kang F., J. Mater. Chem. A 2014, 2, 13193.

Hrubý V., Zaoralová D., Medveď M., Bakandritsos A., Zbořil R., Otyepka M., Nanoscale 2022, 14, 13490. PubMed PMC

Shao Y., El‐Kady M. F., Wang L. J., Zhang Q., Li Y., Wang H., Mousavi M. F., Kaner R. B., Chem. Soc. Rev. 2015, 44, 3639. PubMed

Liang M., Zhi L., J. Mater. Chem. 2009, 19, 5871.

Akshay Kumar K. P., Ghosh K., Alduhaish O., Pumera M., Electrochem. Commun. 2021, 122, 106890.

Sun Y., Li C., Xu Y., Bai H., Yao Z., Shi G., Chem. Commun. 2010, 46, 4740. PubMed

Kumar K. P. A., Ghosh K., Alduhaish O., Pumera M., Electrochem. Commun. 2020, 120, 106827.

Xu K., Merlet C., Lin Z., Shao H., Taberna P., Miao L., Jiang J., Zhu J., Simon P., Energy Storage Mater. 2020, 33, 460.

Cao H., Peng X., Zhao M., Liu P., Xu B., Guo J., RSC Adv. 2018, 8, 2858. PubMed PMC

Levi M. D., Levy N., Sigalov S., Salitra G., Aurbach D., Maier J., J. Am. Chem. Soc. 2010, 132, 13220. PubMed

Zhang Y., Huang H., Ning X., Li C., Fan Z., Pan L., Carbon 2022, 195, 341.

Shpigel N., Chakraborty A., Malchik F., Bergman G., Nimkar A., Gavriel B., Turgeman M., Hong C. N., Lukatskaya M. R., Levi M. D., Gogotsi Y., Major D. T., Aurbach D., J. Am. Chem. Soc. 2021, 143, 12552. PubMed

Shpigel N., Levi M. D., Sigalov S., Mathis T. S., Gogotsi Y., Aurbach D., J. Am. Chem. Soc. 2018, 140, 8910. PubMed

Sudare T., Yamaguchi T., Ueda M., Shiiba H., Tanaka H., Tipplook M., Hayashi F., Teshima K., Nat. Commun. 2022, 13, 6448. PubMed PMC

Geim A. K., Science 2009, 324, 1530. PubMed

Chen D., Tang L., Li J., Chem. Soc. Rev. 2010, 39, 3157. PubMed

Geim A. K., Novoselov K. S., Nat. Mater. 2007, 183. PubMed

Kumar K. P. A., Alduhaish O., Adil S. F., Pumera M., Adv. Mater. Interfaces 2022, 9, 2102317.

Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev. 2012, 112, 6156. PubMed

Xin L., Yang F., Rasouli S., Qiu Y., Li Z. F., Uzunoglu A., Sun C. J., Liu Y., Ferreira P., Li W., Ren Y., Stanciu L. A., Xie J., ACS Catal. 2016, 6, 2642.

Li R., Wei Z., Gou X., ACS Catal. 2015, 5, 4133.

Wang L., Sofer Z., Pumera M., ACS Nano 2020, 14, 21. PubMed

Liu H., Liu Y., Zhu D., J. Mater. Chem. 2011, 21, 3335.

Park J., Yan M., Acc. Chem. Res. 2013, 46, 181. PubMed

Liao L., Peng H., Liu Z., J. Am. Chem. Soc. 2014, 136, 12194. PubMed

Chua C. K., Pumera M., Chem. Soc. Rev. 2014, 43, 291. PubMed

Chua C. K., Pumera M., ACS Nano 2015, 9, 4193. PubMed

Chronopoulos D. D., Bakandritsos A., Pykal M., Zbořil R., Otyepka M., Appl. Mater. Today 2017, 9, 60. PubMed PMC

Robinson J. T., Burgess J. S., Junkermeier C. E., Badescu S. C., Reinecke T. L., Perkins F. K., Zalalutdniov M. K., Baldwin J. W., Culbertson J. C., Sheehan P. E., Snow E. S., Nano Lett. 2010, 10, 3001. PubMed

Hrubý V., Šedajová V., Jakubec P., Bakandritsos A., Zbořil R., Otyepka M., Power Electronic Devices and Components 2024, 7, 100058.

Nair R. R., Ren W., Jalil R., Riaz I., Kravets V. G., Britnell L., Blake P., Schedin F., Mayorov A. S., Yuan S., Katsnelson M. I., Cheng H. M., Strupinski W., Bulusheva L. G., Okotrub A. V., Grigorieva I. V., Grigorenko A. N., Novoselov K. S., Geim A. K., Small 2010, 6, 2877. PubMed

Feng W., Long P., Feng Y., Li Y., Adv. Sci. 2016, 3, 1500413. PubMed PMC

An H., Li Y., Long P., Gao Y., Qin C., Cao C., Feng Y., Feng W., J. Power Sources 2016, 312, 146.

Kong L., Li Y., Peng C., Sun L., Wang K., Liu Y., Feng W., Nano Energy 2022, 104, 107905.

Chen X., Fan K., Liu Y., Li Y., Liu X., Feng W., Wang X., Adv. Mater. 2022, 34, 2101665. PubMed

Sun L., Li Y., Feng W., Small Methods 2023, 7, 2201152. PubMed

Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC

Obraztsov I., Bakandritsos A., Šedajová V., Langer R., Jakubec P., Zoppellaro G., Pykal M., Presser V., Otyepka M., Zbořil R., Adv. Energy Mater. 2022, 12, 2103010.

Jankovský O., Nováček M., Luxa J., Sedmidubský D., Fila V., Pumera M., Sofer Z., Chem. ‐ Eur. J. 2016, 22, 17416. PubMed

Lenarda A., Bakandritsos A., Bevilacqua M., Tavagnacco C., Melchionna M., Naldoni A., Steklý T., Otyepka M., Zbořil R., Fornasiero P., ACS Omega 2019, 4, 19944. PubMed PMC

Šedajová V., Bakandritsos A., Błoński P., Medveď M., Langer R., Zaoralová D., Ugolotti J., Dzíbelová J., Jakubec P., Kupka V., Otyepka M., Energy Environ. Sci. 2022, 15, 740. PubMed PMC

Ohba T., J. Phys. Chem. C 2015, 119, 15185.

Chakraborty S., Kumar H., Dasgupta C., Maiti P. K., Acc. Chem. Res. 2017, 50, 2139. PubMed

Ruiz‐Barragan S., Sebastiani F., Schienbein P., Abraham J., Schwaab G., Nair R. R., Havenith M., Marx D., Phys. Chem. Chem. Phys. 2022, 24, 24734. PubMed

Keerthi A., Goutham S., You Y., Iamprasertkun P., Dryfe R. A. W., Geim A. K., Radha B., Nat. Commun. 2021, 12, 3092. PubMed PMC

Tsai W. Y., Taberna P. L., Simon P., J. Am. Chem. Soc. 2014, 136, 8722. PubMed

Ye J., Wu Y. C., Xu K., Ni K., Shu N., Taberna P. L., Zhu Y., Simon P., J. Am. Chem. Soc. 2019, 141, 16559. PubMed

Levi M. D., Sigalov S., Aurbach D., Daikhin L., J. Phys. Chem. C 2013, 117, 14876.

Ghosh K., Ng S., Lazar P., Padinjareveetil A. K. K., Michalička J., Pumera M., Adv. Funct. Mater. 2024, 34, 2308793.

Niu L., Yang L., Yang J., Chen M., Zeng L., Duan P., Wu T., Pameté E., Presser V., Feng G., Ind. Chem. Mater. 2023, 1, 175.

Pasta M., Wessells C. D., Huggins R. A., Cui Y., Nat. Commun. 2012, 3, 1149. PubMed

Demir‐Cakan R., Palacin M. R., Croguennec L., J. Mater. Chem. A 2019, 7, 20519.

Goubaa H., Escobar‐Teran F., Ressam I., Gao W., El Kadib A., Lucas I. T., Raihane M., Lahcini M., Perrot H., Sel O., J. Phys. Chem. C 2017, 121, 9370.

Eigler S., Hirsch A., Angewandte Chemie – International Edition 2014, 53, 7720. PubMed

Dreyer D. R., Todd A. D., Bielawski C. W., Chem. Soc. Rev. 2014, 43, 5288. PubMed

Xu B., Yue S., Sui Z., Zhang X., Hou S., Cao G., Yang Y., Energy Environ. Sci. 2011, 4, 2826.

Gao W., Debiemme‐Chouvy C., Lahcini M., Perrot H., Sel O., Anal. Chem. 2019, 91, 2885. PubMed

Zhang Y., Liang Y., Dong H., Wang X., Yao Y., J. Electrochem. Soc. 2020, 167, 070558.

Levi M. D., Salitra G., Levy N., Aurbach D., Maier J., Nat. Mater. 2009, 8, 872. PubMed

Bo Z., Yang J., Qi H., Yan J., Cen K., Han Z., Energy Stor. Mater. 2020, 31, 64.

Zhang E., Wu Y. C., Shao H., Klimavicius V., Zhang H., Taberna P. L., Grothe J., Buntkowsky G., Xu F., Simon P., Kaskel S., J. Am. Chem. Soc. 2022, 144, 14217. PubMed

Wang S., Wang L., Zhang K., Zhu Z., Tao Z., Chen J., Nano Lett. 2013, 13, 4404. PubMed

Zhao Q., Wang J., Lu Y., Li Y., Liang G., Chen J., Angew. Chem., Int. Ed. 2016, 55, 12528. PubMed

Armand M., Grugeon S., Vezin H., Laruelle S., Ribière P., Poizot P., Tarascon J. M., Nat. Mater. 2009, 8, 120. PubMed

Islam M. S., Yagyu J., Sekine Y., Sawa S., Hayami S., Mater. Adv. 2022, 3, 3418.

Vermisoglou E. C., Jakubec P., Bakandritsos A., Kupka V., Pykal M., Šedajová V., Vlček J., Tomanec O., Scheibe M., Zbořil R., Otyepka M., ChemSusChem 2021, 14, 3904. PubMed PMC

Björneholm O., Hansen M. H., Hodgson A., Liu L. M., Limmer D. T., Michaelides A., Pedevilla P., Rossmeisl J., Shen H., Tocci G., Tyrode E., Walz M. M., Werner J., Bluhm H., Chem. Rev. 2016, 116, 7698. PubMed

Janeček J., Netz R. R., Langmuir 2007, 23, 8417. PubMed

Kelly C. P., Cramer C. J., Truhlar D. G., J. Phys. Chem. B 2006, 110, 16066. PubMed

Havrila M., Stadlbauer P., Islam B., Otyepka M., Šponer J., J. Chem. Theory Comput. 2017, 13, 3911. PubMed

Feng J., Graf M., Liu K., Ovchinnikov D., Dumcenco D., Heiranian M., Nandigana V., Aluru N. R., Kis A., Radenovic A., Nature 2016, 536, 197. PubMed

Bayly C. I., Cieplak P., Cornell W. D., Kollman P. A., J. Phys. Chem 1993, 97, 10269.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem. 2005, 26, 1701. PubMed

Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A., J. Am. Chem. Soc. 1995, 117, 5179.

Berendsen H. J. C., Grigera J. R., Straatsma T. P., Journal of Physical Chemistry 1987, 91, 6269.

Cheng A., Steele W. A., J. Chem. Phys. 1990, 92, 3858.

Joung I. S., Cheatham T. E., J. Phys. Chem. B 2008, 112, 9020. PubMed PMC

Bussi G., Donadio D., Parrinello M., J. Chem. Phys. 2007, 126, 014101. PubMed

Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., Dinola A., Haak J. R., J. Chem. Phys. 1984, 81, 3684.

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M., J. Comput. Chem. 1997, 18, 1463.

D. W. L ., CCP4 Newsletter On Protein Crystallography, 2002, 40.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...