Convenient Synthesis of Thiohydantoins, Imidazole-2-thiones and Imidazo[2,1-b]thiazol-4-iums from Polymer-Supported α-Acylamino Ketones
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29690582
PubMed Central
PMC6017016
DOI
10.3390/molecules23040976
PII: molecules23040976
Knihovny.cz E-zdroje
- Klíčová slova
- bromoketone, heterocycle, imidazole, serine, solid-phase synthesis, thiohydantoin,
- MeSH
- ketony chemie MeSH
- polymery chemie MeSH
- stereoizomerie MeSH
- techniky syntézy na pevné fázi MeSH
- thiohydantoiny chemická syntéza chemie MeSH
- thioketony chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ketony MeSH
- polymery MeSH
- thiohydantoiny MeSH
- thioketony MeSH
The preparation of 5-methylene-thiohydantoins using solid-phase synthesis is reported in this paper. After sulfonylation of immobilized Ser (t-Bu)-OH with 4-nitrobenzenesulfonyl chloride followed by alkylation with various bromoketones, the 4-Nos group was removed and the resulting polymer-supported α-acylamino ketones reacted with Fmoc-isothiocyanate. Cleavage of the Fmoc protecting group was followed by the spontaneous cyclative cleavage releasing the 5-methylene-thiohydantoin derivatives from the polymer support. Reduction with triethylsilane (TES) yielded the corresponding 5-methyl-thiohydantoins. When Fmoc-isothiocyanate was replaced with alkyl isothiocyanates, the trifluoroacetic acid (TFA) mediated cleavage from the polymer support, which was followed by the cyclization reaction and the imidazo[2,1-b]thiazol-4-iums were obtained. Their conversion in deuterated dimethylsulfoxide led to imidazole-2-thiones.
JEOL Ltd Musashino 3 1 2 Akishima Tokyo 196 8558 Japan
RIKEN Center for Sustainable Resource Science Hirosawa 2 1 Wako Saitama 351 0198 Japan
Zobrazit více v PubMed
Fülöpová V., Soural M. Mining the Chemical Space: Application of 2/4-Nitrobenzenesulfonamides in Solid-Phase Synthesis. ACS Comb. Sci. 2015;17:570–591. doi: 10.1021/acscombsci.5b00089. PubMed DOI
Králová P., Fülöpová V., Maloň M., Volná T., Popa I., Soural M. Stereoselective Polymer-Supported Synthesis of Morpholine- and Thiomorpholine-3-Carboxylic Acid Derivatives. ACS Comb. Sci. 2017;19:173–180. doi: 10.1021/acscombsci.6b00178. PubMed DOI
Pudelová N., Krchňák V. Multiplicity of Diverse Heterocycles from Polymer-Supported α-Acylamino Ketones. J. Comb. Chem. 2009;11:851–859. doi: 10.1021/cc9000532. PubMed DOI PMC
Fülöpová V., Krchňák V. Solid-Phase Synthesis of Trisubstituted 2,5-Dihydrobenzo[f][1,2,5]thiadiazepine 1,1-Dioxide Derivatives. ACS Comb. Sci. 2014;16:412–420. doi: 10.1021/co500084k. PubMed DOI
Králová P., Maloň M., Volná T., Ručilová V., Soural M. Polymer-Supported Stereoselective Synthesis of Benzoxazino[4,3-b][1,2,5]thiadiazepinone 6,6-Dioxides. ACS Comb. Sci. 2017;19:670–674. doi: 10.1021/acscombsci.7b00115. PubMed DOI
Králová P., Maloň M., Soural M. Stereoselective Synthesis of Benzo[e][1,4]oxazino[4,3-a][1,4]diazepine-6,12-Diones with Two Diversity Positions. ACS Comb. Sci. 2017;19:770–774. doi: 10.1021/acscombsci.7b00134. PubMed DOI
Ručilová V., Králová P., Soural M. Synthesis of Disubstituted Pyrazino-Oxazine Derivatives with Controlled Stereochemistry. Eur. J. Org. Chem. 2017;2017:7034–7039. doi: 10.1002/ejoc.201701448. DOI
Feldman D.L. IBM PC Compatible Multi-Chip Module. 5,742,844. U.S. Patent. 1998 Jan 16;
Blanc M., Cussac M., Boucherle A., Leclerc G. Synthesis and Immunomodulating Activity of 1-Amino-2-Thiohydantoin Derivatives. Eur. J. Med. Chem. 1992;27:839–843. doi: 10.1016/0223-5234(92)90119-L. DOI
Janos M., Janos E., Sandor H., Tibor T. Preparation and Fungicidal Activity of 5-Substituted Hydantoins and Their 2-Thio Analogs. J. Agric. Food. Chem. 1993;41:148–152.
Sauli M. Fungicidal Hydantoins Derivatives. 3,823,240. U.S. Patent. 1974 Jul 9;
Łażewska D., Maludziński P., Szymańska E., Kieć-Kononowicz K. The Lipophilicity Estimation of 5-Arylidene Derivatives of (2-Thio)hydantoin with Antimycobacterial Activity. Biomed. Chromatogr. 2007;21:291–298. doi: 10.1002/bmc.755. PubMed DOI
Santos L.C., Uchōa F.T., Canas A.R.P.A., Sousa I.A., Moura R.O., Lima M.C.A., Galdio S.L., Pitta I.R., Barbe J. Synthesis and Anti-inflammatory Activity of New Thiazolidine-2,4-diones, 4-thioxothiazolidinones and 2-thioxoimidazolidinones. Heterocycl. Commun. 2005;11:121–128. doi: 10.1515/HC.2005.11.2.121. DOI
Knoefel P.K., Lehmann G. The Anticonvulsant Action of Diphenyl Hydantoin and Some Related Compounds. J. Pharmacol. Exp. Ther. 1942;76:194–201.
Habib M.M.W., Abdelfattah M.A.O., Abadi A.H. Design and Synthesis of Novel Phenylpiperazine Derivatives as Potential Anticonvulsant Agents. Arch. Pharm. 2015;348:868–874. doi: 10.1002/ardp.201500272. PubMed DOI
Havera H.J., Goshen G. 3-Substituted-5-Phenyl-5-Pyridyl Hydantoins. 3,994,904. U.S. Patent. 1976 Nov 30;
Tolman R.L., Gamsey S., Mehta S., Pongracz K. Telomerase Inhibitors and Methods of Their Use. 6,518,268. U.S. Patent. 2003 Feb 11;
Rodgers T.R., LaMontagne M.P., Markovac A., Ash A.B. Hydantoins as Antitumor Agents. J. Med. Chem. 1977;20:591–594. doi: 10.1021/jm00214a031. PubMed DOI
Bell C., Conklin G.L. Hydantoin Compounds and Methods of Preparation. 3,452,041. U.S. Patent. 1969 Jun 24;
Kodama S. Thiocarbimide Reaction. J. Tokyo Chem. Soc. 1920;41:951–965.
Reyes S., Burgess K. On Formation of Thiohydantoins from Amino Acids under Acylation Conditions. J. Org. Chem. 2006;71:2507–2509. doi: 10.1021/jo052576i. PubMed DOI
Johnson T.B., Renfrew A.G. Reseaches on Hydantoins. XLIII. Synthesis of the Polypeptide-Hydantoin: “Hydantoin-3-Acetic Acid”. J. Am. Chem. Soc. 1925;47:240–245. doi: 10.1021/ja01678a035. DOI
Siddiqui I.R., Yadav S., Shamim S., Shireen, Waseem M.A., Srivastava A., Srivastava A. Solid-Supported Cyclocondensation of Arylglyoxal on Ribosylthiourea under Microwave Activation: A Novel and Efficient Synthesis of N-Glycosylated-2-Thiohydantoins. Bull. Chem. Soc. Jpn. 2014;87:506–510. doi: 10.1246/bcsj.20130138. DOI
Dadiboyena S., Nefzi A. Parallel Solid-Phase Synthesis of Disubstituted 3-(1H-Benzo[d]imidazol-2-yl)imidazolidine-2,4-Diones and 3-(1H-Benzo[d]imidazol-2-yl)-2-Thioxoimidazolidin-4-Ones. Tetrahedron Lett. 2011;52:7030–7033. doi: 10.1016/j.tetlet.2011.10.064. PubMed DOI PMC
Jullian M., Hernandez A., Maurras A., Puget K., Amblard M., Martinez J., Subra G. N-Terminus FITC Labeling of Peptides on Solid Support: The Truth behind the Spacer. Tetrahedron Lett. 2009;50:260–263. doi: 10.1016/j.tetlet.2008.10.141. DOI
Lin M.-J., Sun C.-M. Microwave-Assisted Traceless Synthesis of Thiohydantoin. Tetrahedron Lett. 2003;44:8739–8742. doi: 10.1016/j.tetlet.2003.09.156. DOI
Wang L., Zhao J., Yao Y., Wang C., Zhang J., Shu X., Sun X., Li Y., Liu K., Yuan H. Covalent binding design strategy: A prospective method for discovery of potent targeted anticancer agents. Eur. J. Med. Chem. 2017;142:493–505. doi: 10.1016/j.ejmech.2017.09.024. PubMed DOI
De Cesco S., Kurian J., Dufresne C., Mittermaier A.K., Moitessier N. Covalent inhibitors design and discovery. Eur. J. Med. Chem. 2017;138:96–114. doi: 10.1016/j.ejmech.2017.06.019. PubMed DOI
Lagoutte R., Patouret R., Winssinger N. Covalent inhibitors: An opportunity for rational target selectivity. Curr. Opinion Chem. Biol. 2017;39:54–63. doi: 10.1016/j.cbpa.2017.05.008. PubMed DOI