Selective Functionalization Blended with Scaffold Conductivity in Graphene Acid Promotes H2O2 Electrochemical Sensing
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31788627
PubMed Central
PMC6882107
DOI
10.1021/acsomega.9b02881
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The widespread industrial use of H2O2 has provoked great interest in the development of new and more efficient materials for its detection. Enzymatic electrochemical sensors have drawn particular attention, primarily because of their excellent selectivity. However, their high cost, instability, complex immobilization, and inherent tendency toward denaturation of the enzyme significantly limit their practical usefulness. Inspired by the powerful proton-catalyzed H2O2 reduction mechanism of peroxidases, we have developed a well-defined and densely functionalized carboxylic graphene derivative (graphene acid, GA) that serves as a proton source and conductive electrode for binding and detecting H2O2. An unprecedented H2O2 sensitivity of 525 μA cm-2 mM-1 is achieved by optimizing the balance between the carboxyl group content and scaffold conductivity of GA. Importantly, the GA sensor greatly outperforms all reported carbon-based H2O2 sensors and is superior to enzymatic ones because of its simple immobilization, low cost, and uncompromised sensitivity even after continuous operation for 7 days. In addition, GA-based sensing electrodes remain highly selective in the presence of interferents such as ascorbic acid, paracetamol, and glucose, as well as complex matrices such as milk. GA-based sensors thus have considerable potential for use in practical industrial sensing technologies.
Zobrazit více v PubMed
Chen W.; Cai S.; Ren Q.-Q.; Wen W.; Zhao Y.-D. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 2012, 137, 49.10.1039/C1AN15738H. PubMed DOI
Myers R. L.The 100 most important chemical compounds: A reference guide; firsted. Greenwood Press: Westport, CT, 2007.
Gülden M.; Jess A.; Kammann J.; Maser E.; Seibert H. Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time. Free Radical Biol. Med. 2010, 49, 1298–1305. 10.1016/j.freeradbiomed.2010.07.015. PubMed DOI
Hydrogen Peroxide |Cosmetics Info, http://www.cosmeticsinfo.org/ingredient/hydrogen-peroxide-0, accessed: 7 May 2019.
Nogueira R. F. P.; Oliveira M. C.; Paterlini W. C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 2005, 66, 86–91. 10.1016/j.talanta.2004.10.001. PubMed DOI
Yang Q.; Lu S.; Shen B.; Bao S.; Liu Y. An iron hydroxyl phosphate microoctahedron catalyst as an efficient peroxidase mimic for sensitive and colorimetric quantification of H2O2 and glucose. New J. Chem. 2018, 42, 6803.10.1039/C8NJ00324F. DOI
Peng H.; Lin D.; Liu P.; Wu Y.; Li S.; Lei Y.; Chen W.; Chen Y.; Lin X.; Xia X.; Liu A. Highly sensitive and rapid colorimetric sensing platform based on water-soluble WOx quantum dots with intrinsic peroxidase-like activity. Anal. Chim. Acta 2017, 992, 128.10.1016/j.aca.2017.09.011. PubMed DOI
Zhang D.; Mao X.; Zhang Z.; Zhang S.; Chen J.; Shan D.; Lu X. Fabricated nanoplatform of Cu(II)-functionalized mimetic-peroxidase with catalytic property toward sensitive monitoring of hydrogen peroxide. Sens. Actuators, B 2019, 284, 684.10.1016/j.snb.2019.01.010. DOI
Gomes A.; Fernandes E.; Lima J. L. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45.10.1016/j.jbbm.2005.10.003. PubMed DOI
Lee J. H.; Tang I. N.; Weinstein-Lloyd J. B. A non-enzymatic method for the determination of hydrogen peroxide in atmospheric samples. Anal. Chem. 1990, 62, 2381.10.1021/ac00220a022. DOI
Lu H.; Yu C.; Zhang Y.; Xu S. Efficient core shell structured dual response ratiometric fluorescence probe for determination of H2O2 and glucose via etching of silver nanoprisms. Anal. Chim. Acta 2019, 1048, 178.10.1016/j.aca.2018.10.025. PubMed DOI
Hanaoka S.; Lin J.-M.; Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal. Chim. Acta 2001, 426, 57.10.1016/S0003-2670(00)01181-8. DOI
Tang X. Q.; Zhang Y. D.; Jiang Z. W.; Wang D. M.; Huang C. Z.; Li Y. F. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose. Talanta 2018, 179, 43.10.1016/j.talanta.2017.10.049. PubMed DOI
Chen H.; Lin L.; Li H.; Li J.; Lin J.-M. Aggregation-induced structure transition of protein-stabilized zinc/copper nanoclusters for amplified chemiluminescence. ACS Nano 2015, 9, 2173.10.1021/acsnano.5b00141. PubMed DOI
Pan F.; Wei P.; Zhang M.; Lu C. Micelle modified-carbon nanosphere enhanced chemiluminescence from reactive oxygen species for the detection of hydrogen peroxide. Anal. Methods 2015, 7, 5667.10.1039/C5AY01302J. DOI
Li Y.; You X.; Shi X. Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal–organic framework Fe–MIL–88NH2 as peroxidase mimetic. Food Anal. Methods 2017, 10, 626.10.1007/s12161-016-0617-0. DOI
Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887.10.1016/j.bios.2005.10.027. PubMed DOI
Amarnath C. A.; Sawant S. N. Tailoring synthesis strategies for polyaniline-prussian blue composite in view of energy storage and H2O2 sensing application. Electrochim. Acta 2019, 295, 294.10.1016/j.electacta.2018.10.132. DOI
Ebrahimi A.; Zhang K.; Dong C.; Subramanian S.; Butler D.; Bolotsky A.; Goodnight L.; Cheng Y.; Robinson J. A. FeSx-graphene heterostructures: Nanofabrication-compatible catalysts for ultra-sensitive electrochemical detection of hydrogen peroxide. Sens. Actuators, B 2019, 285, 631.10.1016/j.snb.2018.12.033. DOI
Liu T.; Guo Y.; Zhang Z.; Miao Z.; Zhang X.; Su Z. Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens. Actuators, B 2019, 286, 370.10.1016/j.snb.2019.02.006. DOI
Mao L.; Osborne P. G.; Yamamoto K.; Kato T. Continuous On-Line Measurement of Cerebral Hydrogen Peroxide Using Enzyme-Modified Ring-Disk Plastic Carbon Film Electrode. Anal. Chem. 2002, 74, 3684.10.1021/ac011261+. PubMed DOI
Breslow R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 1995, 28, 146.10.1021/ar00051a008. DOI
Bracamonte M. V.; Melchionna M.; Giuliani A.; Nasi L.; Tavagnacco C.; Prato M.; Fornasiero P. H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: the CeO2 case. Sens. Actuators, B 2017, 239, 923.10.1016/j.snb.2016.08.112. DOI
McCreery R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646.10.1021/cr068076m. PubMed DOI
Duan X.; Xu J.; Wei Z.; Ma J.; Guo S.; Wang S.; Liu H.; Dou S. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.10.1002/adma.201701784. PubMed DOI
Gao Z.; Zhang Y.; Song N.; Li X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2017, 5, 69.10.1080/21663831.2016.1250834. DOI
Rachiy B. I.; Budzulyak I. M.; Vashchynsky V. M.; Ivanichok N. Y.; Nykoliuk M. O. Electrochemical properties of nanoporous carbon material in aqueous electrolytes. Nanoscale Res. Lett. 2016, 11, 18.10.1186/s11671-016-1241-z. PubMed DOI PMC
Rivera L. M.; García G.; Pastor E. Novel graphene materials for the oxygen reduction reaction. Curr. Opin. Electrochem. 2018, 9, 233.10.1016/j.coelec.2018.05.009. DOI
Iglesias D.; Giuliani A.; Melchionna M.; Marchesan S.; Criado A.; Nasi L.; Bevilacqua M.; Tavagnacco C.; Vizza F.; Prato M.; Fornasiero P. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106.10.1016/j.chempr.2017.10.013. DOI
Kim H. W.; Ross M. B.; Kornienko N.; Zhang L.; Guo J.; Yang P.; McCloskey B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282.10.1038/s41929-018-0044-2. DOI
Lu Z.; Chen G.; Siahrostami S.; Chen Z.; Liu K.; Xie J.; Liao L.; Wu T.; Lin D.; Liu Y.; Jaramillo T. F.; Nørskov J. K.; Cui Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156.10.1038/s41929-017-0017-x. DOI
Banks C. E.; Davies T. J.; Wildgoose G. G.; Compton R. G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 0, 829.10.1039/B413177K. PubMed DOI
Wu L.; Zhang X.; Ju H. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem. 2007, 79, 453.10.1021/ac061282+. PubMed DOI
Zhou M.; Guo J.; Guo L.-p.; Bai J. Electrochemical sensing platform based on the highly ordered mesoporous carbon–fullerene system. Anal. Chem. 2008, 80, 4642.10.1021/ac702496k. PubMed DOI
Rabti A.; Raouafi N.; Merkoçi A. Bio(sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon 2016, 108, 481.10.1016/j.carbon.2016.07.043. DOI
Wang J.; Musameh M.; Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 2003, 125, 2408.10.1021/ja028951v. PubMed DOI
Wang J.; Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 2003, 75, 2075.10.1021/ac030007+. PubMed DOI
Pumera M.; Merkoçi A.; Alegret S. Carbon nanotube-epoxy composites for electrochemical sensing. Sens. Actuators, B 2006, 113, 617.10.1016/j.snb.2005.07.010. DOI
Wang J.; Yang S.; Guo D.; Yu P.; Li D.; Ye J.; Mao L. Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem. Commun. 2009, 11, 1892.10.1016/j.elecom.2009.08.019. DOI
Takahashi S.; Abiko N.; Anzai J.-I. Redox response of reduced graphene oxide-modified glassy carbon electrodes to hydrogen peroxide and hydrazine. Materials 2013, 6, 1840.10.3390/ma6051840. PubMed DOI PMC
Zhou M.; Zhai Y.; Dong S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603.10.1021/ac900136z. PubMed DOI
Fan L.; Zhang Q.; Wang K.; Li F.; Niu L. Ferrocene functionalized graphene: preparation, characterization and efficient electron transfer toward sensors of H2O2. J. Mater. Chem. 2012, 22, 6165.10.1039/c2jm15411k. DOI
Zhang R.; Chen W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron. 2017, 89, 249.10.1016/j.bios.2016.01.080. PubMed DOI
Hamilton C. E.; Lomeda J. R.; Sun Z.; Tour J. M.; Barron A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460.10.1021/nl9016623. PubMed DOI
Liang Y.; Wu D.; Feng X.; Müllen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 2009, 21, 1679.10.1002/adma.200803160. DOI
Woo S.; Kim Y.-R.; Chung T. D.; Piao Y.; Kim H. Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim. Acta 2012, 59, 509.10.1016/j.electacta.2011.11.012. DOI
Wang Q.; Li M.; Szunerits S.; Boukherroub R. Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis 2014, 26, 156.10.1002/elan.201300356. DOI
Yeh M.-H.; Li Y.-S.; Chen G.-L.; Lin L.-Y.; Li T.-J.; Chuang H.-M.; Hsieh C.-Y.; Lo S.-C.; Chiang W.-H.; Ho K.-C. Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide. Electrochim. Acta 2015, 172, 52.10.1016/j.electacta.2015.01.210. DOI
Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256.10.1039/C5NR05891K. PubMed DOI
Liao L.; Peng H.; Liu Z. Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 2014, 136, 12194.10.1021/ja5048297. PubMed DOI
Park J.; Yan M. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2013, 46, 181.10.1021/ar300172h. PubMed DOI
Poulos T. L.; Kraut J. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 1980, 255, 8199. PubMed
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and graphene acid: emerging derivatives enabling high-Yield and selective functionalization of graphene. ACS Nano 2017, 11, 2982.10.1021/acsnano.6b08449. PubMed DOI PMC
Radhakrishnana S.; Kim S. J. An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2-reduced graphene oxide nanocomposite. RSC Adv. 2015, 5, 12937.10.1039/C4RA12841A. DOI
Mayo D. W. in Course Notes on the interpretation of infrared and raman spectra; Mayo D. W.; Miller F. A.; Hannah R. W. Ed., John Wiley & Sons: Hoboken, New Jersey: 2003; pp. 101–140.
Szabó T.; Berkesi O.; Forgó P.; Josepovits K.; Sanakis Y.; Petridis D.; Dékány I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18, 2740.10.1021/cm060258+. DOI
Jha S. K.; Vasiliev I. Vibrational signatures of carboxylated graphene: a first-principles study. J. Phys. Chem. C 2018, 122, 24996.10.1021/acs.jpcc.8b06274. DOI
Eda G.; Fanchini G.; Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270.10.1038/nnano.2008.83. PubMed DOI
Gupta B.; Kumar N.; Panda K.; Kanan V.; Joshi S.; Visoly-Fisher I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, 45030.10.1038/srep45030. PubMed DOI PMC
Chen X.; Wu G.; Cai Z.; Oyama M.; Chen X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 2014, 181, 689.10.1007/s00604-013-1098-0. DOI
Cheong Y. H.; Nasir M. Z. M.; Bakandritsos A.; Pykal M.; Jakubec P.; Zbořil R.; Otyepka M.; Pumera M. Cyanographene and graphene acid: the functional group of graphene derivative determines the application in electrochemical sensing and capacitors. ChemElectroChem 2019, 6, 229.10.1002/celc.201800675. DOI
Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615.10.1039/b810189b. PubMed DOI
Dunning T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007.10.1063/1.456153. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378.10.1021/jp810292n. PubMed DOI
Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors
Human virus detection with graphene-based materials