Solvent Controlled Generation of Spin Active Polarons in Two-Dimensional Material under UV Light Irradiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38696712
PubMed Central
PMC11157526
DOI
10.1021/jacs.3c13296
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polarons belong to a class of extensively studied quasiparticles that have found applications spanning diverse fields, including charge transport, colossal magnetoresistance, thermoelectricity, (multi)ferroism, optoelectronics, and photovoltaics. It is notable, though, that their interaction with the local environment has been overlooked so far. We report an unexpected phenomenon of the solvent-induced generation of polaronic spin active states in a two-dimensional (2D) material fluorographene under UV light. Furthermore, we present compelling evidence of the solvent-specific nature of this phenomenon. The generation of spin-active states is robust in acetone, moderate in benzene, and absent in cyclohexane. Continuous wave X-band electron paramagnetic resonance (EPR) spectroscopy experiments revealed a massive increase in the EPR signal for fluorographene dispersed in acetone under UV-light irradiation, while the system did not show any significant signal under dark conditions and without the solvent. The patterns appeared due to the generation of transient magnetic photoexcited states of polaronic character, which encompassed the net 1/2 spin moment detectable by EPR. Advanced ab initio calculations disclosed that polarons are plausibly formed at radical sites in fluorographene which interact strongly with acetone molecules in their vicinity. Additionally, we present a comprehensive scenario for multiplication of polaronic spin active species, highlighting the pivotal role of the photoinduced charge transfer from the solvent to the electrophilic radical centers in fluorographene. We believe that the solvent-tunable polaron formation with the use of UV light and an easily accessible 2D nanomaterial opens up a wide range of future applications, ranging from molecular sensing to magneto-optical devices.
Zobrazit více v PubMed
De Sio A.; Troiani F.; Maiuri M.; Réhault J.; Sommer E.; Lim J.; Huelga S. F.; Plenio M. B.; Rozzi C. A.; Cerullo G.; et al. Tracking the Coherent Generation of Polaron Pairs in Conjugated Polymers. Nat. Commun. 2016, 7 (1), 13742.10.1038/ncomms13742. PubMed DOI PMC
Ghosh R.; Spano F. C. Excitons and Polarons in Organic Materials. Acc. Chem. Res. 2020, 53 (10), 2201–2211. 10.1021/acs.accounts.0c00349. PubMed DOI
Sirringhaus H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26 (9), 1319–1335. 10.1002/adma.201304346. PubMed DOI PMC
Hou J.; Inganäs O.; Friend R. H.; Gao F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17 (2), 119–128. 10.1038/nmat5063. PubMed DOI
Teresa J. M. D.; Ibarra M. R.; Algarabel P. A.; Ritter C.; Marquina C.; Blasco J.; García J.; del Moral A.; Arnold Z. Evidence for Magnetic Polarons in the Magnetoresistive Perovskites. Nature 1997, 386 (6622), 256–259. 10.1038/386256a0. DOI
Miyata K.; Zhu X. Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379–381. 10.1038/s41563-018-0068-7. PubMed DOI
Papageorgiou A. C.; Beglitis N. S.; Pang C. L.; Teobaldi G.; Cabailh G.; Chen Q.; Fisher A. J.; Hofer W. A.; Thornton G. Electron Traps and their Effect on the Surface Chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (6), 2391–2396. 10.1073/pnas.0911349107. PubMed DOI PMC
Wang M.; Bi C.; Li L.; Long S.; Liu Q.; Lv H.; Lu N.; Sun P.; Liu M. Thermoelectric Seebeck Effect in Oxide-Based Resistive Switching Memory. Nat. Commun. 2014, 5 (1), 4598.10.1038/ncomms5598. PubMed DOI PMC
Franchini C.; Reticcioli M.; Setvin M.; Diebold U. Polarons in Materials. Nat. Rev. Mater. 2021, 6 (7), 560–586. 10.1038/s41578-021-00289-w. DOI
Sio W. H.; Giustino F. Polarons in Two-Dimensional Atomic Crystals. Nat. Phys. 2023, 19 (5), 629–636. 10.1038/s41567-023-01953-4. DOI
Kang M.; Jung S. W.; Shin W. J.; Sohn Y.; Ryu S. H.; Kim T. K.; Hoesch M.; Kim K. S. Holstein Polaron in a Valley-Degenerate Two-Dimensional Semiconductor. Nat. Mater. 2018, 17 (8), 676–680. 10.1038/s41563-018-0092-7. PubMed DOI
Liu H.; Wang A.; Zhang P.; Ma C.; Chen C.; Liu Z.; Zhang Y.-Q.; Feng B.; Cheng P.; Zhao J.; et al. Atomic-Scale Manipulation of Single-Polaron in a Two-Dimensional Semiconductor. Nat. Commun. 2023, 14 (1), 3690.10.1038/s41467-023-39361-0. PubMed DOI PMC
Sievers C.; Noda Y.; Qi L.; Albuquerque E. M.; Rioux R. M.; Scott S. L. Phenomena Affecting Catalytic Reactions at Solid-Liquid Interfaces. ACS Catal. 2016, 6 (12), 8286–8307. 10.1021/acscatal.6b02532. DOI
Dyson P. J.; Jessop P. G. Solvent Effects in Catalysis: Rational Improvements of Catalysts via Manipulation of Solvent Interactions. Catal. Sci. Technol. 2016, 6 (10), 3302–3316. 10.1039/C5CY02197A. DOI
Ge N. H.; Wong C. M.; Lingle R. L.; McNeill J. D.; Gaffney K. J.; Harris C. B. Femtosecond Dynamics of Electron Localization at Interfaces. Science 1998, 279 (5348), 202–205. 10.1126/science.279.5348.202. PubMed DOI
Waters M. J.; Hashemi D.; Kieffer J. Semiclassical Model for Calculating Exciton and Polaron Pair Energetics at Interfaces. Mater. Sci. Eng., B 2020, 261, 114657.10.1016/j.mseb.2020.114657. DOI
Chen J.; Penschke C.; Alavi A.; Michaelides A. Small Polarons and the Janus Nature of TiO2(110). Phys. Rev. B 2020, 101 (11), 115402.10.1103/PhysRevB.101.115402. DOI
Reticcioli M.; Sokolović I.; Schmid M.; Diebold U.; Setvin M.; Franchini C. Interplay between Adsorbates and Polarons: CO on Rutile TiO2(110). Phys. Rev. Lett. 2019, 122 (1), 016805.10.1103/PhysRevLett.122.016805. PubMed DOI
Daukiya L.; Seibel J.; De Feyter S. Chemical Modification of 2D Materials Using Molecules and Assemblies of Molecules. Adv. Phys.: X 2019, 4 (1), 1625723.10.1080/23746149.2019.1625723. DOI
Young R. M.; Neumark D. M. Dynamics of Solvated Electrons in Clusters. Chem. Rev. 2012, 112 (11), 5553–5577. 10.1021/cr300042h. PubMed DOI
Zhao J.; Li B.; Onda K.; Feng M.; Petek H. Solvated Electrons on Metal Oxide Surfaces. Chem. Rev. 2006, 106 (10), 4402–4427. 10.1021/cr050173c. PubMed DOI
Hybertsen M. S.; Louie S. G. First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators. Phys. Rev. Lett. 1985, 55 (13), 1418–1421. 10.1103/PhysRevLett.55.1418. PubMed DOI
Salpeter E. E.; Bethe H. A. A Relativistic Equation for Bound-State Problems. Phys. Rev. 1951, 84 (6), 1232–1242. 10.1103/PhysRev.84.1232. DOI
Nair R. R.; Ren W.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S.; et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6 (24), 2877–2884. 10.1002/smll.201001555. PubMed DOI
Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6 (24), 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11 (3), 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27 (14), 2305–2310. 10.1002/adma.201500094. PubMed DOI
Stine R.; Ciszek J. W.; Barlow D. E.; Lee W.-K.; Robinson J. T.; Sheehan P. E. High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir 2012, 28 (21), 7957–7961. 10.1021/la301091f. PubMed DOI
Bosch-Navarro C.; Walker M.; Wilson N. R.; Rourke J. P. Covalent Modification of Exfoliated Fluorographite with Nitrogen Functionalities. J. Mater. Chem. C 2015, 3 (29), 7627–7631. 10.1039/C5TC01633A. DOI
Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Cepe K.; Zboril R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29 (3), 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC
Karlický F.; Otyepka M. Band Gaps and Optical Spectra from Single- and Double-Layer Fluorographene to Graphite Fluoride: Many-Body Effects and Excitonic States. Ann. Phys. 2014, 526 (9–10), 408–414. 10.1002/andp.201400095. DOI
Hrubý V.; Zdražil L.; Dzíbelová J.; Šedajová V.; Bakandritsos A.; Lazar P.; Otyepka M. Unveiling the True Band Gap of Fluorographene and its Origins by Teaming Theory and Experiment. Appl. Surf. Sci. 2022, 587, 152839.10.1016/j.apsusc.2022.152839. DOI
Medved M.; Zoppellaro G.; Ugolotti J.; Matochova D.; Lazar P.; Pospisil T.; Bakandritsos A.; Tucek J.; Zboril R.; Otyepka M. Reactivity of Fluorographene is Triggered by Point Defects: Beyond the Perfect 2D World. Nanoscale 2018, 10 (10), 4696–4707. 10.1039/C7NR09426D. PubMed DOI PMC
Zhu X.; Monahan N. R.; Gong Z.; Zhu H.; Williams K. W.; Nelson C. A. Charge Transfer Excitons at van der Waals Interfaces. J. Am. Chem. Soc. 2015, 137 (26), 8313–8320. 10.1021/jacs.5b03141. PubMed DOI
Dubecký M.; Karlický F.; Minárik S.; Mitas L. Fundamental Gap of Fluorographene by Many-Body GW and Fixed-Node Diffusion Monte Carlo Methods. J. Chem. Phys. 2020, 153 (18), 184706.10.1063/5.0030952. PubMed DOI
Cudazzo P.; Sponza L.; Giorgetti C.; Reining L.; Sottile F.; Gatti M. Exciton Band Structure in Two-Dimensional Materials. Phys. Rev. Lett. 2016, 116 (6), 066803.10.1103/PhysRevLett.116.066803. PubMed DOI
Moiz S. A.; Khan I. A.; Younis W. A.; Masud M. I.; Ismail Y.; Khawaja Y. M. Solvent Induced Charge Transport Mechanism for Conducting Polymer at Higher Temperature. Mater. Res. Express 2020, 7 (9), 095304.10.1088/2053-1591/abb497. DOI
Kwon H.; Kim M.; Nutz M.; Hartmann N. F.; Perrin V.; Meany B.; Hofmann M. S.; Clark C. W.; Htoon H.; Doorn S. K.; et al. Probing Trions at Chemically Tailored Trapping Defects. ACS Cent. Sci. 2019, 5 (11), 1786–1794. 10.1021/acscentsci.9b00707. PubMed DOI PMC
Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Samarakoon D. K.; Chen Z.; Nicolas C.; Wang X.-Q. Structural and Electronic Properties of Fluorographene. Small 2011, 7 (7), 965–969. 10.1002/smll.201002058. PubMed DOI
Lazar P.; Otyepkova E.; Karlicky F.; Cepe K.; Otyepka M. The Surface and Structural Properties of Graphite Fluoride. Carbon 2015, 94, 804–809. 10.1016/j.carbon.2015.07.064. DOI
Klimes J.; Bowler D. R.; Michaelides A. Van der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83 (19), 195131.10.1103/PhysRevB.83.195131. DOI
Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI
Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 (6), 1272–1276. 10.1107/S0021889811038970. DOI
Yang L.; Deslippe J.; Park C.-H.; Cohen M. L.; Louie S. G. Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene. Phys. Rev. Lett. 2009, 103 (18), 186802.10.1103/PhysRevLett.103.186802. PubMed DOI
Perdew J. P.; Ernzerhof M.; Burke K. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1996, 105 (22), 9982–9985. 10.1063/1.472933. DOI
Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620. 10.1039/b810189b. PubMed DOI
Ditchfield R.; Hehre W. J.; Pople J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54 (2), 724–728. 10.1063/1.1674902. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange-Correlation Functional using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1–3), 51–57. 10.1016/j.cplett.2004.06.011. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16. Rev. C.01: Wallingford, CT, 2016.