Solvent Controlled Generation of Spin Active Polarons in Two-Dimensional Material under UV Light Irradiation

. 2024 Jun 05 ; 146 (22) : 15010-15018. [epub] 20240502

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38696712

Polarons belong to a class of extensively studied quasiparticles that have found applications spanning diverse fields, including charge transport, colossal magnetoresistance, thermoelectricity, (multi)ferroism, optoelectronics, and photovoltaics. It is notable, though, that their interaction with the local environment has been overlooked so far. We report an unexpected phenomenon of the solvent-induced generation of polaronic spin active states in a two-dimensional (2D) material fluorographene under UV light. Furthermore, we present compelling evidence of the solvent-specific nature of this phenomenon. The generation of spin-active states is robust in acetone, moderate in benzene, and absent in cyclohexane. Continuous wave X-band electron paramagnetic resonance (EPR) spectroscopy experiments revealed a massive increase in the EPR signal for fluorographene dispersed in acetone under UV-light irradiation, while the system did not show any significant signal under dark conditions and without the solvent. The patterns appeared due to the generation of transient magnetic photoexcited states of polaronic character, which encompassed the net 1/2 spin moment detectable by EPR. Advanced ab initio calculations disclosed that polarons are plausibly formed at radical sites in fluorographene which interact strongly with acetone molecules in their vicinity. Additionally, we present a comprehensive scenario for multiplication of polaronic spin active species, highlighting the pivotal role of the photoinduced charge transfer from the solvent to the electrophilic radical centers in fluorographene. We believe that the solvent-tunable polaron formation with the use of UV light and an easily accessible 2D nanomaterial opens up a wide range of future applications, ranging from molecular sensing to magneto-optical devices.

Zobrazit více v PubMed

De Sio A.; Troiani F.; Maiuri M.; Réhault J.; Sommer E.; Lim J.; Huelga S. F.; Plenio M. B.; Rozzi C. A.; Cerullo G.; et al. Tracking the Coherent Generation of Polaron Pairs in Conjugated Polymers. Nat. Commun. 2016, 7 (1), 13742.10.1038/ncomms13742. PubMed DOI PMC

Ghosh R.; Spano F. C. Excitons and Polarons in Organic Materials. Acc. Chem. Res. 2020, 53 (10), 2201–2211. 10.1021/acs.accounts.0c00349. PubMed DOI

Sirringhaus H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26 (9), 1319–1335. 10.1002/adma.201304346. PubMed DOI PMC

Hou J.; Inganäs O.; Friend R. H.; Gao F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17 (2), 119–128. 10.1038/nmat5063. PubMed DOI

Teresa J. M. D.; Ibarra M. R.; Algarabel P. A.; Ritter C.; Marquina C.; Blasco J.; García J.; del Moral A.; Arnold Z. Evidence for Magnetic Polarons in the Magnetoresistive Perovskites. Nature 1997, 386 (6622), 256–259. 10.1038/386256a0. DOI

Miyata K.; Zhu X. Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379–381. 10.1038/s41563-018-0068-7. PubMed DOI

Papageorgiou A. C.; Beglitis N. S.; Pang C. L.; Teobaldi G.; Cabailh G.; Chen Q.; Fisher A. J.; Hofer W. A.; Thornton G. Electron Traps and their Effect on the Surface Chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (6), 2391–2396. 10.1073/pnas.0911349107. PubMed DOI PMC

Wang M.; Bi C.; Li L.; Long S.; Liu Q.; Lv H.; Lu N.; Sun P.; Liu M. Thermoelectric Seebeck Effect in Oxide-Based Resistive Switching Memory. Nat. Commun. 2014, 5 (1), 4598.10.1038/ncomms5598. PubMed DOI PMC

Franchini C.; Reticcioli M.; Setvin M.; Diebold U. Polarons in Materials. Nat. Rev. Mater. 2021, 6 (7), 560–586. 10.1038/s41578-021-00289-w. DOI

Sio W. H.; Giustino F. Polarons in Two-Dimensional Atomic Crystals. Nat. Phys. 2023, 19 (5), 629–636. 10.1038/s41567-023-01953-4. DOI

Kang M.; Jung S. W.; Shin W. J.; Sohn Y.; Ryu S. H.; Kim T. K.; Hoesch M.; Kim K. S. Holstein Polaron in a Valley-Degenerate Two-Dimensional Semiconductor. Nat. Mater. 2018, 17 (8), 676–680. 10.1038/s41563-018-0092-7. PubMed DOI

Liu H.; Wang A.; Zhang P.; Ma C.; Chen C.; Liu Z.; Zhang Y.-Q.; Feng B.; Cheng P.; Zhao J.; et al. Atomic-Scale Manipulation of Single-Polaron in a Two-Dimensional Semiconductor. Nat. Commun. 2023, 14 (1), 3690.10.1038/s41467-023-39361-0. PubMed DOI PMC

Sievers C.; Noda Y.; Qi L.; Albuquerque E. M.; Rioux R. M.; Scott S. L. Phenomena Affecting Catalytic Reactions at Solid-Liquid Interfaces. ACS Catal. 2016, 6 (12), 8286–8307. 10.1021/acscatal.6b02532. DOI

Dyson P. J.; Jessop P. G. Solvent Effects in Catalysis: Rational Improvements of Catalysts via Manipulation of Solvent Interactions. Catal. Sci. Technol. 2016, 6 (10), 3302–3316. 10.1039/C5CY02197A. DOI

Ge N. H.; Wong C. M.; Lingle R. L.; McNeill J. D.; Gaffney K. J.; Harris C. B. Femtosecond Dynamics of Electron Localization at Interfaces. Science 1998, 279 (5348), 202–205. 10.1126/science.279.5348.202. PubMed DOI

Waters M. J.; Hashemi D.; Kieffer J. Semiclassical Model for Calculating Exciton and Polaron Pair Energetics at Interfaces. Mater. Sci. Eng., B 2020, 261, 114657.10.1016/j.mseb.2020.114657. DOI

Chen J.; Penschke C.; Alavi A.; Michaelides A. Small Polarons and the Janus Nature of TiO2(110). Phys. Rev. B 2020, 101 (11), 115402.10.1103/PhysRevB.101.115402. DOI

Reticcioli M.; Sokolović I.; Schmid M.; Diebold U.; Setvin M.; Franchini C. Interplay between Adsorbates and Polarons: CO on Rutile TiO2(110). Phys. Rev. Lett. 2019, 122 (1), 016805.10.1103/PhysRevLett.122.016805. PubMed DOI

Daukiya L.; Seibel J.; De Feyter S. Chemical Modification of 2D Materials Using Molecules and Assemblies of Molecules. Adv. Phys.: X 2019, 4 (1), 1625723.10.1080/23746149.2019.1625723. DOI

Young R. M.; Neumark D. M. Dynamics of Solvated Electrons in Clusters. Chem. Rev. 2012, 112 (11), 5553–5577. 10.1021/cr300042h. PubMed DOI

Zhao J.; Li B.; Onda K.; Feng M.; Petek H. Solvated Electrons on Metal Oxide Surfaces. Chem. Rev. 2006, 106 (10), 4402–4427. 10.1021/cr050173c. PubMed DOI

Hybertsen M. S.; Louie S. G. First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators. Phys. Rev. Lett. 1985, 55 (13), 1418–1421. 10.1103/PhysRevLett.55.1418. PubMed DOI

Salpeter E. E.; Bethe H. A. A Relativistic Equation for Bound-State Problems. Phys. Rev. 1951, 84 (6), 1232–1242. 10.1103/PhysRev.84.1232. DOI

Nair R. R.; Ren W.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S.; et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6 (24), 2877–2884. 10.1002/smll.201001555. PubMed DOI

Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6 (24), 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC

Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11 (3), 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC

Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27 (14), 2305–2310. 10.1002/adma.201500094. PubMed DOI

Stine R.; Ciszek J. W.; Barlow D. E.; Lee W.-K.; Robinson J. T.; Sheehan P. E. High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir 2012, 28 (21), 7957–7961. 10.1021/la301091f. PubMed DOI

Bosch-Navarro C.; Walker M.; Wilson N. R.; Rourke J. P. Covalent Modification of Exfoliated Fluorographite with Nitrogen Functionalities. J. Mater. Chem. C 2015, 3 (29), 7627–7631. 10.1039/C5TC01633A. DOI

Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Cepe K.; Zboril R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29 (3), 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC

Karlický F.; Otyepka M. Band Gaps and Optical Spectra from Single- and Double-Layer Fluorographene to Graphite Fluoride: Many-Body Effects and Excitonic States. Ann. Phys. 2014, 526 (9–10), 408–414. 10.1002/andp.201400095. DOI

Hrubý V.; Zdražil L.; Dzíbelová J.; Šedajová V.; Bakandritsos A.; Lazar P.; Otyepka M. Unveiling the True Band Gap of Fluorographene and its Origins by Teaming Theory and Experiment. Appl. Surf. Sci. 2022, 587, 152839.10.1016/j.apsusc.2022.152839. DOI

Medved M.; Zoppellaro G.; Ugolotti J.; Matochova D.; Lazar P.; Pospisil T.; Bakandritsos A.; Tucek J.; Zboril R.; Otyepka M. Reactivity of Fluorographene is Triggered by Point Defects: Beyond the Perfect 2D World. Nanoscale 2018, 10 (10), 4696–4707. 10.1039/C7NR09426D. PubMed DOI PMC

Zhu X.; Monahan N. R.; Gong Z.; Zhu H.; Williams K. W.; Nelson C. A. Charge Transfer Excitons at van der Waals Interfaces. J. Am. Chem. Soc. 2015, 137 (26), 8313–8320. 10.1021/jacs.5b03141. PubMed DOI

Dubecký M.; Karlický F.; Minárik S.; Mitas L. Fundamental Gap of Fluorographene by Many-Body GW and Fixed-Node Diffusion Monte Carlo Methods. J. Chem. Phys. 2020, 153 (18), 184706.10.1063/5.0030952. PubMed DOI

Cudazzo P.; Sponza L.; Giorgetti C.; Reining L.; Sottile F.; Gatti M. Exciton Band Structure in Two-Dimensional Materials. Phys. Rev. Lett. 2016, 116 (6), 066803.10.1103/PhysRevLett.116.066803. PubMed DOI

Moiz S. A.; Khan I. A.; Younis W. A.; Masud M. I.; Ismail Y.; Khawaja Y. M. Solvent Induced Charge Transport Mechanism for Conducting Polymer at Higher Temperature. Mater. Res. Express 2020, 7 (9), 095304.10.1088/2053-1591/abb497. DOI

Kwon H.; Kim M.; Nutz M.; Hartmann N. F.; Perrin V.; Meany B.; Hofmann M. S.; Clark C. W.; Htoon H.; Doorn S. K.; et al. Probing Trions at Chemically Tailored Trapping Defects. ACS Cent. Sci. 2019, 5 (11), 1786–1794. 10.1021/acscentsci.9b00707. PubMed DOI PMC

Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Samarakoon D. K.; Chen Z.; Nicolas C.; Wang X.-Q. Structural and Electronic Properties of Fluorographene. Small 2011, 7 (7), 965–969. 10.1002/smll.201002058. PubMed DOI

Lazar P.; Otyepkova E.; Karlicky F.; Cepe K.; Otyepka M. The Surface and Structural Properties of Graphite Fluoride. Carbon 2015, 94, 804–809. 10.1016/j.carbon.2015.07.064. DOI

Klimes J.; Bowler D. R.; Michaelides A. Van der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83 (19), 195131.10.1103/PhysRevB.83.195131. DOI

Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI

Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 (6), 1272–1276. 10.1107/S0021889811038970. DOI

Yang L.; Deslippe J.; Park C.-H.; Cohen M. L.; Louie S. G. Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene. Phys. Rev. Lett. 2009, 103 (18), 186802.10.1103/PhysRevLett.103.186802. PubMed DOI

Perdew J. P.; Ernzerhof M.; Burke K. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1996, 105 (22), 9982–9985. 10.1063/1.472933. DOI

Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620. 10.1039/b810189b. PubMed DOI

Ditchfield R.; Hehre W. J.; Pople J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54 (2), 724–728. 10.1063/1.1674902. DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange-Correlation Functional using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1–3), 51–57. 10.1016/j.cplett.2004.06.011. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16. Rev. C.01: Wallingford, CT, 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...