Post-Synthetic Derivatization of Graphitic Carbon Nitride with Methanesulfonyl Chloride: Synthesis, Characterization and Photocatalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098
Ministerstvo Školství, Mládeže a Tělovýchovy
19-15199S
Grantová Agentura České Republiky
SP 2020/44
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
31979003
PubMed Central
PMC7074974
DOI
10.3390/nano10020193
PII: nano10020193
Knihovny.cz E-zdroje
- Klíčová slova
- derivatization, graphitic carbon nitride, mesyl chloride, photocatalysis, sulfur,
- Publikační typ
- časopisecké články MeSH
Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CH3SO2-) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption of light decreased in the opposite manner, but no influence on the band gap energies was observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈ Mes-CN > S-CN. The highest activity of Mes-ExCN and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition, in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic activity as well.
Department of Chemistry VŠB Technical University of Ostrava 700 80 Ostrava Czech Republic
ENET Centre VŠB Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Dong G., Zhang Y., Pan Q., Qiu J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI
Kroke E. Novel group 14 nitrides. Coord. Chem. Rev. 2004;248:493–532. doi: 10.1016/j.ccr.2004.02.001. DOI
Safaei J., Mohamed N.A., Mohamad Noh M.F., Soh M.F., Ludin N.A., Ibrahim M.A., Roslam Wan Isahak W.N., Mat Teridi M.A. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI
Dong Y., Wang Q., Wu H., Chen Y., Lu C.H., Chi Y., Yang H.H. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI
Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC
Wang L., Wang C., Hu X., Xue H., Pang H. Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chem. Asian J. 2016;11:3305–3328. doi: 10.1002/asia.201601178. PubMed DOI
Zhou Z., Zhang Y., Shen Y., Liu S., Zhang Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI
Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI
Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI
Ong W.-J., Tan L.-L., Ng Y.H., Yong S.-T., Chai S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI
Moniz S.J.A., Shevlin S.A., Martin D.J., Guo Z.-X., Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C. DOI
Cao S., Low J., Yu J., Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI
Ong W.-J. 2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter? Front. Mater. 2017;4 doi: 10.3389/fmats.2017.00011. DOI
Zhao Z., Sun Y., Dong F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale. 2015;7:15–37. doi: 10.1039/C4NR03008G. PubMed DOI
Fu J., Yu J., Jiang C., Cheng B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018;8:1701503. doi: 10.1002/aenm.201701503. DOI
Low J., Jiang C., Cheng B., Wageh S., Al-Ghamdi A.A., Yu J. A Review of Direct Z-Scheme Photocatalysts. Small Methods. 2017;1:1700080. doi: 10.1002/smtd.201700080. DOI
Reli M., Huo P., Sihor M., Ambrozova N., Troppova I., Matejova L., Lang J., Svoboda L., Kustrowski P., Ritz M., et al. Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O. J. Phys. Chem. A. 2016;120:8564–8573. doi: 10.1021/acs.jpca.6b07236. PubMed DOI
Troppová I., Šihor M., Reli M., Ritz M., Praus P., Kočí K. Unconventionally prepared TiO2/g-C 3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 2017 doi: 10.1016/j.apsusc.2017.06.299. DOI
Reli M., Svoboda L., Šihor M., Troppová I., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. 2017 doi: 10.1007/s11356-017-0723-6. PubMed DOI
Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI
Praus P., Svoboda L., Dvorský R., Faria J.L., Silva C.G., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI
Reli M., Troppová I., Šihor M., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/BiVO4 composite. Appl. Surf. Sci. 2019;469:181–191. doi: 10.1016/j.apsusc.2018.10.255. DOI
Praus P., Lang J., Martaus A., Svoboda L., Matějka V., Kormunda M., Šihor M., Reli M., Kočí K. Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide. J. Inorg. Organomet. Polym. Mater. 2019;29:1219–1234. doi: 10.1007/s10904-019-01085-4. DOI
Matějka V., Šihor M., Reli M., Martaus A., Kočí K., Kormunda M., Praus P. Composites g-C3N4 and BiOIO3 for photocatalytic decomposition of N2O. Mater. Sci. Semicond. Process. 2019;100:113–122. doi: 10.1016/j.mssp.2019.04.036. DOI
Kočí K., Reli M., Troppová I., Šihor M., Bajcarová T., Ritz M., Pavlovský J., Praus P. Photocatalytic Decomposition of N2O by Using Nanostructured Graphitic Carbon Nitride/Zinc Oxide Photocatalysts Immobilized on Foam. Catalysts. 2019;9:735. doi: 10.3390/catal9090735. DOI
Svoboda L., Škuta R., Matějka V., Dvorský R., Matýsek D., Henych J., Mančík P., Praus P. Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Mater. Chem. Phys. 2019;228:228–236. doi: 10.1016/j.matchemphys.2019.02.077. DOI
Jiang L., Yuan X., Pan Y., Liang J., Zeng G., Wu Z., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI
Li H., Wang L., Liu Y., Lei J., Zhang J. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016;42:3979–3998. doi: 10.1007/s11164-015-2294-9. DOI
Ke L., Li P., Wu X., Jiang S., Luo M., Liu Y., Le Z., Sun C., Song S. Graphene-like sulfur-doped g-C 3 N 4 for photocatalytic reduction elimination of UO 2 2+ under visible Light. Appl. Catal. B Environ. 2017;205:319–326. doi: 10.1016/j.apcatb.2016.12.043. DOI
Hu S., Ma L., Xie Y., Li F., Fan Z., Wang F., Wang Q., Wang Y., Kang X., Wu G. Hydrothermal synthesis of oxygen functionalized S–P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans. 2015;44:20889–20897. doi: 10.1039/C5DT04035C. PubMed DOI
Liang Q., Zhang M., Liu C., Xu S., Li Z. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A Gen. 2016;519:107–115. doi: 10.1016/j.apcata.2016.03.033. DOI
Wang K., Li Q., Liu B., Cheng B., Ho W., Yu J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015;176–177:44–52. doi: 10.1016/j.apcatb.2015.03.045. DOI
Cao L., Wang R., Wang D. Synthesis and characterization of sulfur self-doped g-C3N4 with efficient visible-light photocatalytic activity. Mater. Lett. 2015;149:50–53. doi: 10.1016/j.matlet.2015.02.119. DOI
Ge L., Han C., Xiao X., Guo L., Li Y. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 2013;48:3919–3925. doi: 10.1016/j.materresbull.2013.06.002. DOI
Lu C., Zhang P., Jiang S., Wu X., Song S., Zhu M., Lou Z., Li Z., Liu F., Liu Y., et al. Photocatalytic reduction elimination of UO2 2+ pollutant under visible light with metal-free sulfur doped g-C 3 N 4 photocatalyst. Appl. Catal. B Environ. 2017;200:378–385. doi: 10.1016/j.apcatb.2016.07.036. DOI
Qin H., Lv W., Bai J., Zhou Y., Wen Y., He Q., Tang J., Wang L., Zhou Q. Sulfur-doped porous graphitic carbon nitride heterojunction hybrids for enhanced photocatalytic H2 evolution. J. Mater. Sci. 2019;54:4811–4820. doi: 10.1007/s10853-018-3168-5. DOI
Lin K.-Y.A., Zhang Z.-Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst. Chem. Eng. J. 2017;313:1320–1327. doi: 10.1016/j.cej.2016.11.025. DOI
Fan Q., Liu J., Yu Y., Zuo S., Li B. A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl. Surf. Sci. 2017;391:360–368. doi: 10.1016/j.apsusc.2016.04.055. DOI
Chen J., Hong Z., Chen Y., Lin B., Gao B. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 2015;145:129–132. doi: 10.1016/j.matlet.2015.01.073. DOI
Tan H., Gu X., Kong P., Lian Z., Li B., Zheng Z. Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Appl. Catal. B Environ. 2019;242:67–75. doi: 10.1016/j.apcatb.2018.09.084. DOI
Li L., Fang W., Zhang P., Bi J., He Y., Wang J., Su W. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A. 2016;4:12402–12406. doi: 10.1039/C6TA04711D. DOI
Vu M.-H., Sakar M., Nguyen C.-C., Do T.-O. Chemically Bonded Ni Cocatalyst onto the S Doped g-C3N4 Nanosheets and Their Synergistic Enhancement in H2 Production under Sunlight Irradiation. ACS Sustain. Chem. Eng. 2018;6:4194–4203. doi: 10.1021/acssuschemeng.7b04598. DOI
Xie L., Dai Y., Zhou Y., Chang X., Yin L. Sulfur (VI) modified graphite carbon nitride nanosheets with chrysanthemum-like structure and enhanced photocatalytic activity. Chem. Phys. Lett. 2018;693:1–7. doi: 10.1016/j.cplett.2017.12.071. DOI
Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Yao C., Yuan A., Wang Z., Lei H., Zhang L., Guo L., Dong X. Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis. J. Mater. Chem. A. 2019;7:13071–13079. doi: 10.1039/C9TA03253C. DOI
Miller T.S., Jorge A.B., Suter T.M., Sella A., Corà F., McMillan P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017;19:15613–15638. doi: 10.1039/C7CP02711G. PubMed DOI
Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (B) 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI
Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI
Shen H., Zhao X., Duan L., Liu R., Li H. Enhanced visible light photocatalytic activity in SnO2 @g-C3N4 core-shell structures. Mater. Sci. Eng. B. 2017;218:23–30. doi: 10.1016/j.mseb.2017.01.006. DOI
Chen X., Zhou B., Yang S., Wu H., Wu Y., Wu L., Pan J., Xiong X. In situ construction of an SnO2/g-C3N4heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 2015;5:68953–68963. doi: 10.1039/C5RA11801H. DOI
Liu X., Jin A., Jia Y., Xia T., Deng C., Zhu M., Chen C., Chen X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017;405:359–371. doi: 10.1016/j.apsusc.2017.02.025. DOI
Wu P., Wang J., Zhao J., Guo L., Osterloh F.E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A. 2014;2:20338–20344. doi: 10.1039/C4TA04100C. DOI
Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T., Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI
Komatsu T. The First Synthesis and Characterization of Cyameluric High Polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI
Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893. doi: 10.1039/b800274f. DOI
Lin S., Ye X., Gao X., Huang J. Mechanistic insight into the water photooxidation on pure and sulfur-doped g-C3N4 photocatalysts from DFT calculations with dispersion corrections. J. Mol. Catal. A Chem. 2015;406:137–144. doi: 10.1016/j.molcata.2015.05.018. DOI
Ronning C., Feldermann H., Merk R., Hofsäss H., Reinke P., Thiele J.U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B. 1998;58:2207–2215. doi: 10.1103/PhysRevB.58.2207. DOI
Choudhury D., Das B., Sarma D.D., Rao C.N.R. XPS evidence for molecular charge-transfer doping of graphene. Chem. Phys. Lett. 2010;497:66–69. doi: 10.1016/j.cplett.2010.07.089. DOI
Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 2000;9:1904–1907. doi: 10.1016/S0925-9635(00)00345-9. DOI
Titantah J.T., Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam. Relat. Mater. 2007;16:581–588. doi: 10.1016/j.diamond.2006.11.048. DOI
Gammon W.J., Kraft O., Reilly A.C., Holloway B.C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon. 2003;41:1917–1923. doi: 10.1016/S0008-6223(03)00170-2. DOI
Zhu B., Xia P., Li Y., Ho W., Yu J. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017;391:175–183. doi: 10.1016/j.apsusc.2016.07.104. DOI
Burg P., Fydrych P., Cagniant D., Nanse G., Bimer J., Jankowska A. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon. 2002;40:1521–1531. doi: 10.1016/S0008-6223(02)00004-0. DOI
Lu Y.-C., Chen J., Wang A.-J., Bao N., Feng J.-J., Wang W., Shao L. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J. Mater. Chem. C. 2015;3:73–78. doi: 10.1039/C4TC02111H. DOI
Goettmann F., Fischer A., Antonietti M., Thomas A. Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene. Angew. Chem. Int. Ed. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI
Wang K.-L., Li Y., Sun T., Mao F., Wu J.-K., Xue B. Fabrication of Na, Cl co-doped graphitic carbon nitride with enhanced photocatalytic activity for degradation of dyes and antibiotics. J. Mater. Sci. Mater. Electron. 2019;30:4446–4454. doi: 10.1007/s10854-019-00733-2. DOI
Brosillon S., Lhomme L., Vallet C., Bouzaza A., Wolbert D. Gas phase photocatalysis and liquid phase photocatalysis: Interdependence and influence of substrate concentration and photon flow on degradation reaction kinetics. Appl. Catal. B Environ. 2008;78:232–241. doi: 10.1016/j.apcatb.2007.09.011. DOI
Chen X., Wang W., Xiao H., Hong C., Zhu F., Yao Y., Xue Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012;193–194:290–295. doi: 10.1016/j.cej.2012.04.033. DOI
Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010. DOI
Liu C., Zhang Y., Dong F., Reshak A.H., Ye L., Pinna N., Zeng C., Zhang T., Huang H. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B Environ. 2017;203:465–474. doi: 10.1016/j.apcatb.2016.10.002. DOI
Modification of Graphitic Carbon Nitride with Hydrogen Peroxide
Graphitic Carbon Nitride for Photocatalytic Air Treatment