Post-Synthetic Derivatization of Graphitic Carbon Nitride with Methanesulfonyl Chloride: Synthesis, Characterization and Photocatalysis

. 2020 Jan 22 ; 10 (2) : . [epub] 20200122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31979003

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098 Ministerstvo Školství, Mládeže a Tělovýchovy
19-15199S Grantová Agentura České Republiky
SP 2020/44 Vysoká Škola Bánská - Technická Univerzita Ostrava

Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CH3SO2-) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption of light decreased in the opposite manner, but no influence on the band gap energies was observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈ Mes-CN > S-CN. The highest activity of Mes-ExCN and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition, in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic activity as well.

Zobrazit více v PubMed

Dong G., Zhang Y., Pan Q., Qiu J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI

Kroke E. Novel group 14 nitrides. Coord. Chem. Rev. 2004;248:493–532. doi: 10.1016/j.ccr.2004.02.001. DOI

Safaei J., Mohamed N.A., Mohamad Noh M.F., Soh M.F., Ludin N.A., Ibrahim M.A., Roslam Wan Isahak W.N., Mat Teridi M.A. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI

Dong Y., Wang Q., Wu H., Chen Y., Lu C.H., Chi Y., Yang H.H. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI

Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC

Wang L., Wang C., Hu X., Xue H., Pang H. Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chem. Asian J. 2016;11:3305–3328. doi: 10.1002/asia.201601178. PubMed DOI

Zhou Z., Zhang Y., Shen Y., Liu S., Zhang Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI

Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI

Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI

Ong W.-J., Tan L.-L., Ng Y.H., Yong S.-T., Chai S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI

Moniz S.J.A., Shevlin S.A., Martin D.J., Guo Z.-X., Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C. DOI

Cao S., Low J., Yu J., Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI

Ong W.-J. 2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter? Front. Mater. 2017;4 doi: 10.3389/fmats.2017.00011. DOI

Zhao Z., Sun Y., Dong F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale. 2015;7:15–37. doi: 10.1039/C4NR03008G. PubMed DOI

Fu J., Yu J., Jiang C., Cheng B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018;8:1701503. doi: 10.1002/aenm.201701503. DOI

Low J., Jiang C., Cheng B., Wageh S., Al-Ghamdi A.A., Yu J. A Review of Direct Z-Scheme Photocatalysts. Small Methods. 2017;1:1700080. doi: 10.1002/smtd.201700080. DOI

Reli M., Huo P., Sihor M., Ambrozova N., Troppova I., Matejova L., Lang J., Svoboda L., Kustrowski P., Ritz M., et al. Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O. J. Phys. Chem. A. 2016;120:8564–8573. doi: 10.1021/acs.jpca.6b07236. PubMed DOI

Troppová I., Šihor M., Reli M., Ritz M., Praus P., Kočí K. Unconventionally prepared TiO2/g-C 3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 2017 doi: 10.1016/j.apsusc.2017.06.299. DOI

Reli M., Svoboda L., Šihor M., Troppová I., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. 2017 doi: 10.1007/s11356-017-0723-6. PubMed DOI

Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI

Praus P., Svoboda L., Dvorský R., Faria J.L., Silva C.G., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI

Reli M., Troppová I., Šihor M., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/BiVO4 composite. Appl. Surf. Sci. 2019;469:181–191. doi: 10.1016/j.apsusc.2018.10.255. DOI

Praus P., Lang J., Martaus A., Svoboda L., Matějka V., Kormunda M., Šihor M., Reli M., Kočí K. Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide. J. Inorg. Organomet. Polym. Mater. 2019;29:1219–1234. doi: 10.1007/s10904-019-01085-4. DOI

Matějka V., Šihor M., Reli M., Martaus A., Kočí K., Kormunda M., Praus P. Composites g-C3N4 and BiOIO3 for photocatalytic decomposition of N2O. Mater. Sci. Semicond. Process. 2019;100:113–122. doi: 10.1016/j.mssp.2019.04.036. DOI

Kočí K., Reli M., Troppová I., Šihor M., Bajcarová T., Ritz M., Pavlovský J., Praus P. Photocatalytic Decomposition of N2O by Using Nanostructured Graphitic Carbon Nitride/Zinc Oxide Photocatalysts Immobilized on Foam. Catalysts. 2019;9:735. doi: 10.3390/catal9090735. DOI

Svoboda L., Škuta R., Matějka V., Dvorský R., Matýsek D., Henych J., Mančík P., Praus P. Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Mater. Chem. Phys. 2019;228:228–236. doi: 10.1016/j.matchemphys.2019.02.077. DOI

Jiang L., Yuan X., Pan Y., Liang J., Zeng G., Wu Z., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI

Li H., Wang L., Liu Y., Lei J., Zhang J. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016;42:3979–3998. doi: 10.1007/s11164-015-2294-9. DOI

Ke L., Li P., Wu X., Jiang S., Luo M., Liu Y., Le Z., Sun C., Song S. Graphene-like sulfur-doped g-C 3 N 4 for photocatalytic reduction elimination of UO 2 2+ under visible Light. Appl. Catal. B Environ. 2017;205:319–326. doi: 10.1016/j.apcatb.2016.12.043. DOI

Hu S., Ma L., Xie Y., Li F., Fan Z., Wang F., Wang Q., Wang Y., Kang X., Wu G. Hydrothermal synthesis of oxygen functionalized S–P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans. 2015;44:20889–20897. doi: 10.1039/C5DT04035C. PubMed DOI

Liang Q., Zhang M., Liu C., Xu S., Li Z. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A Gen. 2016;519:107–115. doi: 10.1016/j.apcata.2016.03.033. DOI

Wang K., Li Q., Liu B., Cheng B., Ho W., Yu J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015;176–177:44–52. doi: 10.1016/j.apcatb.2015.03.045. DOI

Cao L., Wang R., Wang D. Synthesis and characterization of sulfur self-doped g-C3N4 with efficient visible-light photocatalytic activity. Mater. Lett. 2015;149:50–53. doi: 10.1016/j.matlet.2015.02.119. DOI

Ge L., Han C., Xiao X., Guo L., Li Y. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 2013;48:3919–3925. doi: 10.1016/j.materresbull.2013.06.002. DOI

Lu C., Zhang P., Jiang S., Wu X., Song S., Zhu M., Lou Z., Li Z., Liu F., Liu Y., et al. Photocatalytic reduction elimination of UO2 2+ pollutant under visible light with metal-free sulfur doped g-C 3 N 4 photocatalyst. Appl. Catal. B Environ. 2017;200:378–385. doi: 10.1016/j.apcatb.2016.07.036. DOI

Qin H., Lv W., Bai J., Zhou Y., Wen Y., He Q., Tang J., Wang L., Zhou Q. Sulfur-doped porous graphitic carbon nitride heterojunction hybrids for enhanced photocatalytic H2 evolution. J. Mater. Sci. 2019;54:4811–4820. doi: 10.1007/s10853-018-3168-5. DOI

Lin K.-Y.A., Zhang Z.-Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst. Chem. Eng. J. 2017;313:1320–1327. doi: 10.1016/j.cej.2016.11.025. DOI

Fan Q., Liu J., Yu Y., Zuo S., Li B. A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl. Surf. Sci. 2017;391:360–368. doi: 10.1016/j.apsusc.2016.04.055. DOI

Chen J., Hong Z., Chen Y., Lin B., Gao B. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 2015;145:129–132. doi: 10.1016/j.matlet.2015.01.073. DOI

Tan H., Gu X., Kong P., Lian Z., Li B., Zheng Z. Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Appl. Catal. B Environ. 2019;242:67–75. doi: 10.1016/j.apcatb.2018.09.084. DOI

Li L., Fang W., Zhang P., Bi J., He Y., Wang J., Su W. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A. 2016;4:12402–12406. doi: 10.1039/C6TA04711D. DOI

Vu M.-H., Sakar M., Nguyen C.-C., Do T.-O. Chemically Bonded Ni Cocatalyst onto the S Doped g-C3N4 Nanosheets and Their Synergistic Enhancement in H2 Production under Sunlight Irradiation. ACS Sustain. Chem. Eng. 2018;6:4194–4203. doi: 10.1021/acssuschemeng.7b04598. DOI

Xie L., Dai Y., Zhou Y., Chang X., Yin L. Sulfur (VI) modified graphite carbon nitride nanosheets with chrysanthemum-like structure and enhanced photocatalytic activity. Chem. Phys. Lett. 2018;693:1–7. doi: 10.1016/j.cplett.2017.12.071. DOI

Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI

Yao C., Yuan A., Wang Z., Lei H., Zhang L., Guo L., Dong X. Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis. J. Mater. Chem. A. 2019;7:13071–13079. doi: 10.1039/C9TA03253C. DOI

Miller T.S., Jorge A.B., Suter T.M., Sella A., Corà F., McMillan P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017;19:15613–15638. doi: 10.1039/C7CP02711G. PubMed DOI

Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (B) 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI

Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI

Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI

Shen H., Zhao X., Duan L., Liu R., Li H. Enhanced visible light photocatalytic activity in SnO2 @g-C3N4 core-shell structures. Mater. Sci. Eng. B. 2017;218:23–30. doi: 10.1016/j.mseb.2017.01.006. DOI

Chen X., Zhou B., Yang S., Wu H., Wu Y., Wu L., Pan J., Xiong X. In situ construction of an SnO2/g-C3N4heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 2015;5:68953–68963. doi: 10.1039/C5RA11801H. DOI

Liu X., Jin A., Jia Y., Xia T., Deng C., Zhu M., Chen C., Chen X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017;405:359–371. doi: 10.1016/j.apsusc.2017.02.025. DOI

Wu P., Wang J., Zhao J., Guo L., Osterloh F.E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A. 2014;2:20338–20344. doi: 10.1039/C4TA04100C. DOI

Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T., Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI

Komatsu T. The First Synthesis and Characterization of Cyameluric High Polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI

Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI

Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893. doi: 10.1039/b800274f. DOI

Lin S., Ye X., Gao X., Huang J. Mechanistic insight into the water photooxidation on pure and sulfur-doped g-C3N4 photocatalysts from DFT calculations with dispersion corrections. J. Mol. Catal. A Chem. 2015;406:137–144. doi: 10.1016/j.molcata.2015.05.018. DOI

Ronning C., Feldermann H., Merk R., Hofsäss H., Reinke P., Thiele J.U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B. 1998;58:2207–2215. doi: 10.1103/PhysRevB.58.2207. DOI

Choudhury D., Das B., Sarma D.D., Rao C.N.R. XPS evidence for molecular charge-transfer doping of graphene. Chem. Phys. Lett. 2010;497:66–69. doi: 10.1016/j.cplett.2010.07.089. DOI

Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 2000;9:1904–1907. doi: 10.1016/S0925-9635(00)00345-9. DOI

Titantah J.T., Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam. Relat. Mater. 2007;16:581–588. doi: 10.1016/j.diamond.2006.11.048. DOI

Gammon W.J., Kraft O., Reilly A.C., Holloway B.C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon. 2003;41:1917–1923. doi: 10.1016/S0008-6223(03)00170-2. DOI

Zhu B., Xia P., Li Y., Ho W., Yu J. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017;391:175–183. doi: 10.1016/j.apsusc.2016.07.104. DOI

Burg P., Fydrych P., Cagniant D., Nanse G., Bimer J., Jankowska A. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon. 2002;40:1521–1531. doi: 10.1016/S0008-6223(02)00004-0. DOI

Lu Y.-C., Chen J., Wang A.-J., Bao N., Feng J.-J., Wang W., Shao L. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J. Mater. Chem. C. 2015;3:73–78. doi: 10.1039/C4TC02111H. DOI

Goettmann F., Fischer A., Antonietti M., Thomas A. Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene. Angew. Chem. Int. Ed. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI

Wang K.-L., Li Y., Sun T., Mao F., Wu J.-K., Xue B. Fabrication of Na, Cl co-doped graphitic carbon nitride with enhanced photocatalytic activity for degradation of dyes and antibiotics. J. Mater. Sci. Mater. Electron. 2019;30:4446–4454. doi: 10.1007/s10854-019-00733-2. DOI

Brosillon S., Lhomme L., Vallet C., Bouzaza A., Wolbert D. Gas phase photocatalysis and liquid phase photocatalysis: Interdependence and influence of substrate concentration and photon flow on degradation reaction kinetics. Appl. Catal. B Environ. 2008;78:232–241. doi: 10.1016/j.apcatb.2007.09.011. DOI

Chen X., Wang W., Xiao H., Hong C., Zhu F., Yao Y., Xue Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012;193–194:290–295. doi: 10.1016/j.cej.2012.04.033. DOI

Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010. DOI

Liu C., Zhang Y., Dong F., Reshak A.H., Ye L., Pinna N., Zeng C., Zhang T., Huang H. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B Environ. 2017;203:465–474. doi: 10.1016/j.apcatb.2016.10.002. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modification of Graphitic Carbon Nitride with Hydrogen Peroxide

. 2020 Sep 03 ; 10 (9) : . [epub] 20200903

Graphitic Carbon Nitride for Photocatalytic Air Treatment

. 2020 Jul 07 ; 13 (13) : . [epub] 20200707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...