Modification of Graphitic Carbon Nitride with Hydrogen Peroxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098
Ministerstvo Školství, Mládeže a Tělovýchovy
19-15199S
Grantová Agentura České Republiky
SP 2020/14
Vysoká Škola Bánská - Technická Univerzita Ostrava
SP 2020/44
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
32899275
PubMed Central
PMC7559342
DOI
10.3390/nano10091747
PII: nano10091747
Knihovny.cz E-zdroje
- Klíčová slova
- characterization, graphitic carbon nitride, hydrogen peroxide, modification,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (GCN) was synthetized by heating melamine and then it was thermally exfoliated for 1-3 h in air. Both bulk and exfoliated GCN nanomaterials were treated in the 10-30% aqueous solutions of H2O2 for us to study their modification. The light absorption properties were observed by the reddish color and the red-shifts of their UV-Vis spectra. The content of oxygen increased and hydrogen peroxide was supposed to partially oxidize C-OH groups to C=O ones and to form C-O-C groups instead of edge C-NH-C ones. The GCN structure changes were not observed. However, a surface modification of the GCN materials was recognized by their changed photocatalytic activities tested by means of Acid Orange 7 (AO7) and Rhodamines B (RhB), zeta-potentials, and neutralization titration curves.
Zobrazit více v PubMed
Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Dong G., Zhang Y., Pan Q., Qiu J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI
Kroke E. Novel group 14 nitrides. Coord. Chem. Rev. 2004;248:493–532. doi: 10.1016/j.ccr.2004.02.001. DOI
Safaei J., Mohamed N.A., Mohamad Noh M.F., Soh M.F., Ludin N.A., Ibrahim M.A., Roslam Wan Isahak W.N., Mat Teridi M.A. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI
Dong Y., Wang Q., Wu H., Chen Y., Lu C.H., Chi Y., Yang H.H. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI
Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC
Wang L., Wang C., Hu X., Xue H., Pang H. Metal/graphitic carbon nitride composites: Synthesis, structures, and applications. Chem. Asian J. 2016;11:3305–3328. doi: 10.1002/asia.201601178. PubMed DOI
Zhou Z., Zhang Y., Shen Y., Liu S., Zhang Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI
Sun X., Wang C., Su D., Wang G., Zhong Y. Application of photocatalytic materials in sensors. Adv. Mater. Technol. 2020;5:1900993. doi: 10.1002/admt.201900993. DOI
Wang Y., Mao J., Meng X., Yu L., Deng D., Bao X. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019;119:1806–1854. doi: 10.1021/acs.chemrev.8b00501. PubMed DOI
Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI
Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI
Ong W.-J., Tan L.-L., Ng Y.H., Yong S.-T., Chai S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI
Moniz S.J.A., Shevlin S.A., Martin D.J., Guo Z.-X., Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C. DOI
Cao S., Low J., Yu J., Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI
Ong W.-J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter? Front. Mater. 2017;4 doi: 10.3389/fmats.2017.00011. DOI
Jiang L., Yuan X., Pan Y., Liang J., Zeng G., Wu Z., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI
Liao G., Gong Y., Zhang L., Gao H., Yang G.-J., Fang B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019;12:2080–2147. doi: 10.1039/C9EE00717B. DOI
Li H., Wang L., Liu Y., Lei J., Zhang J. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016;42:3979–3998. doi: 10.1007/s11164-015-2294-9. DOI
Hasija V., Raizada P., Sudhaik A., Sharma K., Kumar A., Singh P., Jonnalagadda S.B., Thakur V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today. 2019;15:494–524. doi: 10.1016/j.apmt.2019.04.003. DOI
Liu X., Ma R., Zhuang L., Hu B., Chen J., Liu X., Wang X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2020 doi: 10.1080/10643389.2020.1734433. DOI
Liu S., Li D., Sun H., Ang H.M., Tadé M.O., Wang S. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J. Colloid Interface Sci. 2016;468:176–182. doi: 10.1016/j.jcis.2016.01.051. PubMed DOI
Tang R., Ding R., Xie X. Preparation of oxygen-doped graphitic carbon nitride and its visible-light photocatalytic performance on bisphenol A degradation. Water Sci. Technol. 2018;78:1023–1033. doi: 10.2166/wst.2018.361. PubMed DOI
Li Q., Wang S., Sun Z., Tang Q., Liu Y., Wang L., Wang H., Wu Z. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019;12:2749–2759. doi: 10.1007/s12274-019-2509-2. DOI
Marcì G., García-López E.I., Pomilla F.R., Palmisano L., Zaffora A., Santamaria M., Krivtsov I., Ilkaeva M., Barbieriková Z., Brezová V. Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catal. Today. 2019;328:21–28. doi: 10.1016/j.cattod.2019.01.075. DOI
Vu V.T., Bartling S., Peppel T., Lund H., Kreyenschulte C., Rabeah J., Moustakas N.G., Surkus A.-E., Ta H.D., Steinfeldt N. Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids Surf. A Physicochem. Eng. Asp. 2020;589:124383. doi: 10.1016/j.colsurfa.2019.124383. DOI
Hu S., Wang K., Li P., Wang F., Kang X., Wu G. The effect of hydroxyl group grafting on the photocatalytic phenolic compounds oxidation ability of g-C3N4 prepared by a novel H2O2-alkali hydrothermal method. Appl. Surf. Sci. 2020;513:145783. doi: 10.1016/j.apsusc.2020.145783. DOI
Li J., Shen B., Hong Z., Lin B., Gao B., Chen Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012;48:12017–12019. doi: 10.1039/c2cc35862j. PubMed DOI
Yuan X., Xie R., Zhang Q., Sun L., Long X., Xia D. Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: Performance and mechanism. Sep. Purif. Technol. 2019;211:823–831. doi: 10.1016/j.seppur.2018.10.052. DOI
Praus P., Smýkalová A., Foniok K., Matějka V., Kormunda M., Smetana B., Cvejn D. The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitrogen atmosphere. Appl. Surf. Sci. 2020;529:147086. doi: 10.1016/j.apsusc.2020.147086. DOI
Yang L., Huang J., Shi L., Cao L., Yu Q., Jie Y., Fei J., Ouyang H., Ye J. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2017;204:335–345. doi: 10.1016/j.apcatb.2016.11.047. DOI
Kharlamov A., Bondarenko M., Kharlamova G. Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diam. Relat. Mater. 2016;61:46–55. doi: 10.1016/j.diamond.2015.11.006. DOI
Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Engl. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI
Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI
Shen H., Zhao X., Duan L., Liu R., Li H. Enhanced visible light photocatalytic activity in SnO2@g-C3N4 core-shell structures. Mater. Sci. Eng. B. 2017;218:23–30. doi: 10.1016/j.mseb.2017.01.006. DOI
Chen X., Zhou B., Yang S., Wu H., Wu Y., Wu L., Pan J., Xiong X. In situ construction of an SnO2/g-C3N4heterojunction for enhanced visible-light photocatalytic activity. Rsc Adv. 2015;5:68953–68963. doi: 10.1039/C5RA11801H. DOI
Liu X., Jin A., Jia Y., Xia T., Deng C., Zhu M., Chen C., Chen X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017;405:359–371. doi: 10.1016/j.apsusc.2017.02.025. DOI
Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Zhang Y., Pan Q., Chai G., Liang M., Dong G., Zhang Q., Qiu J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013;3:1943. doi: 10.1038/srep01943. PubMed DOI PMC
Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893. doi: 10.1039/b800274f. DOI
Komatsu T. The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI
Kim M., Hwang S., Yu J.-S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007;17:1656–1659. doi: 10.1039/B702213A. DOI
Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T., Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI
Wu P., Wang J., Zhao J., Guo L., Osterloh F.E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A. 2014;2:20338–20344. doi: 10.1039/C4TA04100C. DOI
Titantah J.T., Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam. Relat. Mater. 2007;16:581–588. doi: 10.1016/j.diamond.2006.11.048. DOI
Ming L., Yue H., Xu L., Chen F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A. 2014;2:19145–19149. doi: 10.1039/C4TA04041D. DOI
Cao C.-B., Lv Q., Zhu H.-S. Carbon nitride prepared by solvothermal method. Diam. Relat. Mater. 2003;12:1070–1074. doi: 10.1016/S0925-9635(02)00309-6. DOI
Ronning C., Feldermann H., Merk R., Hofsäss H., Reinke P., Thiele J.U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B. 1998;58:2207–2215. doi: 10.1103/PhysRevB.58.2207. DOI
Choudhury D., Das B., Sarma D.D., Rao C.N.R. XPS evidence for molecular charge-transfer doping of graphene. Chem. Phys. Lett. 2010;497:66–69. doi: 10.1016/j.cplett.2010.07.089. DOI
Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 2000;9:1904–1907. doi: 10.1016/S0925-9635(00)00345-9. DOI
Abdi H., Williams L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI
Marchon B., Carrazza J., Heinemann H., Somorjai G.A. TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon. 1988;26:507–514. doi: 10.1016/0008-6223(88)90149-2. DOI
Samanta S., Yadav R., Kumar A., Kumar Sinha A., Srivastava R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B Environ. 2019;259:118054. doi: 10.1016/j.apcatb.2019.118054. DOI
Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small. 2017;13:1603938. doi: 10.1002/smll.201603938. PubMed DOI
Chen Y., Liu X., Hou L., Guo X., Fu R., Sun J. Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 2020;383:123132. doi: 10.1016/j.cej.2019.123132. DOI
Jiménez-Calvo P., Marchal C., Cottineau T., Caps V., Keller V. Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites. J. Mater. Chem. A. 2019;7:14849–14863. doi: 10.1039/C9TA01734H. DOI
Wang X., Li L., Meng J., Xia P., Yang Y., Guo Y. Enhanced simulated sunlight photocatalytic reduction of an aqueous hexavalent chromium over hydroxyl-modified graphitic carbon nitride. Appl. Surf. Sci. 2020;506:144181. doi: 10.1016/j.apsusc.2019.144181. DOI
Huang Z.-F., Song J., Pan L., Wang Z., Zhang X., Zou J.-J., Mi W., Zhang X., Wang L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy. 2015;12:646–656. doi: 10.1016/j.nanoen.2015.01.043. DOI
Brosillon S., Lhomme L., Vallet C., Bouzaza A., Wolbert D. Gas phase photocatalysis and liquid phase photocatalysis: Interdependence and influence of substrate concentration and photon flow on degradation reaction kinetics. Appl. Catal. B Environ. 2008;78:232–241. doi: 10.1016/j.apcatb.2007.09.011. DOI
Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 2002;77:102–116. doi: 10.1002/jctb.532. DOI
Banerjee S., Gopal J., Muraleedharan P., Tyagi A.K., Raj B. Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Curr. Sci. 2006;90:1378–1383.
Turchi C.S., Ollis D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990;122:178–192. doi: 10.1016/0021-9517(90)90269-P. DOI
Chen X., Wang W., Xiao H., Hong C., Zhu F., Yao Y., Xue Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012;193:290–295. doi: 10.1016/j.cej.2012.04.033. DOI
Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B: Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010. DOI
Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI
Praus P., Svoboda L., Dvorský R., Faria J.L., Silva C.G., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI
Sun H., Shang Y., Xu K., Tang Y., Li J., Liu Z. MnO2 aerogels for highly efficient oxidative degradation of Rhodamine B. Rsc Adv. 2017;7:30283–30288. doi: 10.1039/C7RA04345G. DOI
Isari A.A., Payan A., Fattahi M., Jorfi S., Kakavandi B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018;462:549–564. doi: 10.1016/j.apsusc.2018.08.133. DOI
Zhu B., Xia P., Ho W., Yu J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015;344:188–195. doi: 10.1016/j.apsusc.2015.03.086. DOI
Wang Y.-T., Wang N., Chen M.-L., Yang T., Wang J.-H. One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. Rsc Adv. 2016;6:98893–98898. doi: 10.1039/C6RA22829A. DOI
Al Marzouqi F., Al Farsi B., Kuvarega A.T., Al Lawati H.A.J., Al Kindy S.M.Z., Kim Y., Selvaraj R. Controlled microwave-assisted synthesis of the 2D-BiOCl/2D-g-C3N4 heterostructure for the degradation of amine-based pharmaceuticals under solar light illumination. ACS Omega. 2019;4:4671–4678. doi: 10.1021/acsomega.8b03665. PubMed DOI PMC
Praus P., Smýkalová A., Foniok K., Velíšek P., Cvejn D., Žádný J., Storch J. Post-synthetic derivatization of graphitic carbon nitride with methanesulfonyl chloride: Synthesis, characterization and photocatalysis. Nanomaterials. 2020;10:193. doi: 10.3390/nano10020193. PubMed DOI PMC