Modification of Graphitic Carbon Nitride with Hydrogen Peroxide

. 2020 Sep 03 ; 10 (9) : . [epub] 20200903

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32899275

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098 Ministerstvo Školství, Mládeže a Tělovýchovy
19-15199S Grantová Agentura České Republiky
SP 2020/14 Vysoká Škola Bánská - Technická Univerzita Ostrava
SP 2020/44 Vysoká Škola Bánská - Technická Univerzita Ostrava

Graphitic carbon nitride (GCN) was synthetized by heating melamine and then it was thermally exfoliated for 1-3 h in air. Both bulk and exfoliated GCN nanomaterials were treated in the 10-30% aqueous solutions of H2O2 for us to study their modification. The light absorption properties were observed by the reddish color and the red-shifts of their UV-Vis spectra. The content of oxygen increased and hydrogen peroxide was supposed to partially oxidize C-OH groups to C=O ones and to form C-O-C groups instead of edge C-NH-C ones. The GCN structure changes were not observed. However, a surface modification of the GCN materials was recognized by their changed photocatalytic activities tested by means of Acid Orange 7 (AO7) and Rhodamines B (RhB), zeta-potentials, and neutralization titration curves.

Zobrazit více v PubMed

Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI

Dong G., Zhang Y., Pan Q., Qiu J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI

Kroke E. Novel group 14 nitrides. Coord. Chem. Rev. 2004;248:493–532. doi: 10.1016/j.ccr.2004.02.001. DOI

Safaei J., Mohamed N.A., Mohamad Noh M.F., Soh M.F., Ludin N.A., Ibrahim M.A., Roslam Wan Isahak W.N., Mat Teridi M.A. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI

Dong Y., Wang Q., Wu H., Chen Y., Lu C.H., Chi Y., Yang H.H. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI

Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC

Wang L., Wang C., Hu X., Xue H., Pang H. Metal/graphitic carbon nitride composites: Synthesis, structures, and applications. Chem. Asian J. 2016;11:3305–3328. doi: 10.1002/asia.201601178. PubMed DOI

Zhou Z., Zhang Y., Shen Y., Liu S., Zhang Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI

Sun X., Wang C., Su D., Wang G., Zhong Y. Application of photocatalytic materials in sensors. Adv. Mater. Technol. 2020;5:1900993. doi: 10.1002/admt.201900993. DOI

Wang Y., Mao J., Meng X., Yu L., Deng D., Bao X. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019;119:1806–1854. doi: 10.1021/acs.chemrev.8b00501. PubMed DOI

Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI

Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI

Ong W.-J., Tan L.-L., Ng Y.H., Yong S.-T., Chai S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI

Moniz S.J.A., Shevlin S.A., Martin D.J., Guo Z.-X., Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C. DOI

Cao S., Low J., Yu J., Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI

Ong W.-J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter? Front. Mater. 2017;4 doi: 10.3389/fmats.2017.00011. DOI

Jiang L., Yuan X., Pan Y., Liang J., Zeng G., Wu Z., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI

Liao G., Gong Y., Zhang L., Gao H., Yang G.-J., Fang B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019;12:2080–2147. doi: 10.1039/C9EE00717B. DOI

Li H., Wang L., Liu Y., Lei J., Zhang J. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016;42:3979–3998. doi: 10.1007/s11164-015-2294-9. DOI

Hasija V., Raizada P., Sudhaik A., Sharma K., Kumar A., Singh P., Jonnalagadda S.B., Thakur V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today. 2019;15:494–524. doi: 10.1016/j.apmt.2019.04.003. DOI

Liu X., Ma R., Zhuang L., Hu B., Chen J., Liu X., Wang X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2020 doi: 10.1080/10643389.2020.1734433. DOI

Liu S., Li D., Sun H., Ang H.M., Tadé M.O., Wang S. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J. Colloid Interface Sci. 2016;468:176–182. doi: 10.1016/j.jcis.2016.01.051. PubMed DOI

Tang R., Ding R., Xie X. Preparation of oxygen-doped graphitic carbon nitride and its visible-light photocatalytic performance on bisphenol A degradation. Water Sci. Technol. 2018;78:1023–1033. doi: 10.2166/wst.2018.361. PubMed DOI

Li Q., Wang S., Sun Z., Tang Q., Liu Y., Wang L., Wang H., Wu Z. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019;12:2749–2759. doi: 10.1007/s12274-019-2509-2. DOI

Marcì G., García-López E.I., Pomilla F.R., Palmisano L., Zaffora A., Santamaria M., Krivtsov I., Ilkaeva M., Barbieriková Z., Brezová V. Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catal. Today. 2019;328:21–28. doi: 10.1016/j.cattod.2019.01.075. DOI

Vu V.T., Bartling S., Peppel T., Lund H., Kreyenschulte C., Rabeah J., Moustakas N.G., Surkus A.-E., Ta H.D., Steinfeldt N. Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids Surf. A Physicochem. Eng. Asp. 2020;589:124383. doi: 10.1016/j.colsurfa.2019.124383. DOI

Hu S., Wang K., Li P., Wang F., Kang X., Wu G. The effect of hydroxyl group grafting on the photocatalytic phenolic compounds oxidation ability of g-C3N4 prepared by a novel H2O2-alkali hydrothermal method. Appl. Surf. Sci. 2020;513:145783. doi: 10.1016/j.apsusc.2020.145783. DOI

Li J., Shen B., Hong Z., Lin B., Gao B., Chen Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012;48:12017–12019. doi: 10.1039/c2cc35862j. PubMed DOI

Yuan X., Xie R., Zhang Q., Sun L., Long X., Xia D. Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: Performance and mechanism. Sep. Purif. Technol. 2019;211:823–831. doi: 10.1016/j.seppur.2018.10.052. DOI

Praus P., Smýkalová A., Foniok K., Matějka V., Kormunda M., Smetana B., Cvejn D. The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitrogen atmosphere. Appl. Surf. Sci. 2020;529:147086. doi: 10.1016/j.apsusc.2020.147086. DOI

Yang L., Huang J., Shi L., Cao L., Yu Q., Jie Y., Fei J., Ouyang H., Ye J. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2017;204:335–345. doi: 10.1016/j.apcatb.2016.11.047. DOI

Kharlamov A., Bondarenko M., Kharlamova G. Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diam. Relat. Mater. 2016;61:46–55. doi: 10.1016/j.diamond.2015.11.006. DOI

Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI

Wang Y., Wang X., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Engl. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI

Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI

Shen H., Zhao X., Duan L., Liu R., Li H. Enhanced visible light photocatalytic activity in SnO2@g-C3N4 core-shell structures. Mater. Sci. Eng. B. 2017;218:23–30. doi: 10.1016/j.mseb.2017.01.006. DOI

Chen X., Zhou B., Yang S., Wu H., Wu Y., Wu L., Pan J., Xiong X. In situ construction of an SnO2/g-C3N4heterojunction for enhanced visible-light photocatalytic activity. Rsc Adv. 2015;5:68953–68963. doi: 10.1039/C5RA11801H. DOI

Liu X., Jin A., Jia Y., Xia T., Deng C., Zhu M., Chen C., Chen X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017;405:359–371. doi: 10.1016/j.apsusc.2017.02.025. DOI

Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI

Zhang Y., Pan Q., Chai G., Liang M., Dong G., Zhang Q., Qiu J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013;3:1943. doi: 10.1038/srep01943. PubMed DOI PMC

Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893. doi: 10.1039/b800274f. DOI

Komatsu T. The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI

Kim M., Hwang S., Yu J.-S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007;17:1656–1659. doi: 10.1039/B702213A. DOI

Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI

Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T., Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI

Wu P., Wang J., Zhao J., Guo L., Osterloh F.E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A. 2014;2:20338–20344. doi: 10.1039/C4TA04100C. DOI

Titantah J.T., Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam. Relat. Mater. 2007;16:581–588. doi: 10.1016/j.diamond.2006.11.048. DOI

Ming L., Yue H., Xu L., Chen F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A. 2014;2:19145–19149. doi: 10.1039/C4TA04041D. DOI

Cao C.-B., Lv Q., Zhu H.-S. Carbon nitride prepared by solvothermal method. Diam. Relat. Mater. 2003;12:1070–1074. doi: 10.1016/S0925-9635(02)00309-6. DOI

Ronning C., Feldermann H., Merk R., Hofsäss H., Reinke P., Thiele J.U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B. 1998;58:2207–2215. doi: 10.1103/PhysRevB.58.2207. DOI

Choudhury D., Das B., Sarma D.D., Rao C.N.R. XPS evidence for molecular charge-transfer doping of graphene. Chem. Phys. Lett. 2010;497:66–69. doi: 10.1016/j.cplett.2010.07.089. DOI

Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 2000;9:1904–1907. doi: 10.1016/S0925-9635(00)00345-9. DOI

Abdi H., Williams L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI

Marchon B., Carrazza J., Heinemann H., Somorjai G.A. TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon. 1988;26:507–514. doi: 10.1016/0008-6223(88)90149-2. DOI

Samanta S., Yadav R., Kumar A., Kumar Sinha A., Srivastava R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B Environ. 2019;259:118054. doi: 10.1016/j.apcatb.2019.118054. DOI

Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small. 2017;13:1603938. doi: 10.1002/smll.201603938. PubMed DOI

Chen Y., Liu X., Hou L., Guo X., Fu R., Sun J. Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 2020;383:123132. doi: 10.1016/j.cej.2019.123132. DOI

Jiménez-Calvo P., Marchal C., Cottineau T., Caps V., Keller V. Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites. J. Mater. Chem. A. 2019;7:14849–14863. doi: 10.1039/C9TA01734H. DOI

Wang X., Li L., Meng J., Xia P., Yang Y., Guo Y. Enhanced simulated sunlight photocatalytic reduction of an aqueous hexavalent chromium over hydroxyl-modified graphitic carbon nitride. Appl. Surf. Sci. 2020;506:144181. doi: 10.1016/j.apsusc.2019.144181. DOI

Huang Z.-F., Song J., Pan L., Wang Z., Zhang X., Zou J.-J., Mi W., Zhang X., Wang L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy. 2015;12:646–656. doi: 10.1016/j.nanoen.2015.01.043. DOI

Brosillon S., Lhomme L., Vallet C., Bouzaza A., Wolbert D. Gas phase photocatalysis and liquid phase photocatalysis: Interdependence and influence of substrate concentration and photon flow on degradation reaction kinetics. Appl. Catal. B Environ. 2008;78:232–241. doi: 10.1016/j.apcatb.2007.09.011. DOI

Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 2002;77:102–116. doi: 10.1002/jctb.532. DOI

Banerjee S., Gopal J., Muraleedharan P., Tyagi A.K., Raj B. Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Curr. Sci. 2006;90:1378–1383.

Turchi C.S., Ollis D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990;122:178–192. doi: 10.1016/0021-9517(90)90269-P. DOI

Chen X., Wang W., Xiao H., Hong C., Zhu F., Yao Y., Xue Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012;193:290–295. doi: 10.1016/j.cej.2012.04.033. DOI

Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B: Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010. DOI

Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI

Praus P., Svoboda L., Dvorský R., Faria J.L., Silva C.G., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI

Sun H., Shang Y., Xu K., Tang Y., Li J., Liu Z. MnO2 aerogels for highly efficient oxidative degradation of Rhodamine B. Rsc Adv. 2017;7:30283–30288. doi: 10.1039/C7RA04345G. DOI

Isari A.A., Payan A., Fattahi M., Jorfi S., Kakavandi B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018;462:549–564. doi: 10.1016/j.apsusc.2018.08.133. DOI

Zhu B., Xia P., Ho W., Yu J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015;344:188–195. doi: 10.1016/j.apsusc.2015.03.086. DOI

Wang Y.-T., Wang N., Chen M.-L., Yang T., Wang J.-H. One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. Rsc Adv. 2016;6:98893–98898. doi: 10.1039/C6RA22829A. DOI

Al Marzouqi F., Al Farsi B., Kuvarega A.T., Al Lawati H.A.J., Al Kindy S.M.Z., Kim Y., Selvaraj R. Controlled microwave-assisted synthesis of the 2D-BiOCl/2D-g-C3N4 heterostructure for the degradation of amine-based pharmaceuticals under solar light illumination. ACS Omega. 2019;4:4671–4678. doi: 10.1021/acsomega.8b03665. PubMed DOI PMC

Praus P., Smýkalová A., Foniok K., Velíšek P., Cvejn D., Žádný J., Storch J. Post-synthetic derivatization of graphitic carbon nitride with methanesulfonyl chloride: Synthesis, characterization and photocatalysis. Nanomaterials. 2020;10:193. doi: 10.3390/nano10020193. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...