Graphitic Carbon Nitride for Photocatalytic Air Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15199S
Grantová Agentura České Republiky
PubMed
32645966
PubMed Central
PMC7372426
DOI
10.3390/ma13133038
PII: ma13133038
Knihovny.cz E-zdroje
- Klíčová slova
- NOx, acetaldehyde, g-C3N4, gas phase, photocatalyst,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (g-C3N4) is a conjugated polymer, which recently drew a lot of attention as a metal-free and UV and visible light responsive photocatalyst in the field of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability and earth-abundant nature. In the present work, bulk g-C3N4 was synthesized by thermal decomposition of melamine. This material was further exfoliated by thermal treatment. S-doped samples were prepared from thiourea or further treatment of exfoliated g-C3N4 by mesylchloride. Synthesized materials were applied for photocatalytic removal of air pollutants (acetaldehyde and NOx) according to the ISO 22197 and ISO 22197-1 methodology. The efficiency of acetaldehyde removal under UV irradiation was negligible for all g-C3N4 samples. This can be explained by the fact that g-C3N4 under irradiation does not directly form hydroxyl radicals, which are the primary oxidation species in acetaldehyde oxidation. It was proved by electron paramagnetic resonance (EPR) spectroscopy that the dominant species formed on the irradiated surface of g-C3N4 was the superoxide radical. Its production was responsible for a very high NOx removal efficiency not only under UV irradiation (which was comparable with that of TiO2), but also under visible irradiation.
Zobrazit více v PubMed
Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Jiang L., Yuan X., Pan Y., Liang J., Zeng G., Wu Z., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI
Malloy C.D., Marr J.S. Sick-building syndrome. Lancet. 1997;349:1013–1016. doi: 10.1016/S0140-6736(05)63912-8. PubMed DOI
ISO 22197-2: 2011 . Fine Ceramics, Advanced Technical Ceramics—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 2: Removal of Acetaldehyde. ISO; Geneva, Switzerland: 2011.
Papailias I., Todorova N., Giannakopoulou T., Dvoranová D., Brezová V., Dimotikali D., Trapalis C. Selective removal of organic and inorganic air pollutants by adjusting the g-C3N4/TiO2 ratio. Catal. Today. 2019 doi: 10.1016/j.cattod.2019.12.021. DOI
Mills A., Hill C., Robertson P.K.J. Overview of the current ISO tests for photocatalytic materials. J. Photochem. Photobiol. A Chem. 2012;237:7–23. doi: 10.1016/j.jphotochem.2012.02.024. DOI
ISO 22197-1: 2016 (en) Fine Ceramics, Advanced Technical Ceramics—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide. ISO; Geneva, Switzerland: 2016.
Praus P., Smýkalová A., Foniok K., Velíšek P., Cvejn D., Žádný J., Storch J. Post-synthetic derivatization of graphitic carbon nitride with methanesulfonyl chloride: Synthesis, characterization and photocatalysis. Nanomaterials. 2020;10:193. doi: 10.3390/nano10020193. PubMed DOI PMC
Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Krýsa J., Baudys M., Vislocka X., Neumann-Spallart M. Composite photocatalysts based on TiO2– carbon for air pollutant removal: Aspects of adsorption. Catal. Today. 2020;340:34–39. doi: 10.1016/j.cattod.2018.09.027. DOI
Paušová Š., Riva M., Baudys M., Krýsa J., Barbieriková Z., Brezová V. Composite materials based on active carbon/TiO2 for photocatalytic water purification. Catal. Today. 2019;328:178–182. doi: 10.1016/j.cattod.2019.01.010. DOI
Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Dvoranová D., Mazúr M., Papailias I., Giannakopoulou T., Trapalis C., Brezová V. EPR investigations of G-C3N4/TiO2 nanocomposites. Catalysts. 2018;8:47. doi: 10.3390/catal8020047. DOI
Hollmann D., Karnahl M., Tschierlei S., Kailasam K., Schneider M., Radnik J., Grabow K., Bentrup U., Junge H., Beller M., et al. Structure–activity relationships in bulk polymeric and sol–gel-derived carbon nitrides during photocatalytic hydrogen production. Chem. Mater. 2014;26:1727–1733. doi: 10.1021/cm500034p. DOI
Dvoranová D., Barbieriková Z., Mazúr M., García-López E.I., Marcì G., Lušpai K., Brezová V. EPR investigations of polymeric and H2O2-modified C3N4-based photocatalysts. J. Photochem. Photobiol. A Chem. 2019;375:100–113. doi: 10.1016/j.jphotochem.2019.02.006. DOI
Wang X., Blechert S., Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;2:1596–1606. doi: 10.1021/cs300240x. DOI
Giannakopoulou T., Papailias I., Todorova N., Boukos N., Liu Y., Yu J., Trapalis C. Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017;310:571–580. doi: 10.1016/j.cej.2015.12.102. DOI
Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995;95:69–96. doi: 10.1021/cr00033a004. DOI
Papailias I., Todorova N., Giannakopoulou T., Ioannidis N., Boukos N., Athanasekou C.P., Dimotikali D., Trapalis C. Chemical vs thermal exfoliation of g-3N4 for NOx removal under visible light irradiation. Appl. Catal. B Environ. 2018;239:16–26. doi: 10.1016/j.apcatb.2018.07.078. DOI
Wang L., Zhou G., Tian Y., Yan L., Deng M., Yang B., Kang Z., Sun H. Hydroxyl decorated g-3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. Appl. Catal. B Environ. 2019;244:262–271. doi: 10.1016/j.apcatb.2018.11.054. DOI
Augugliaro V., Bellardita M., Loddo V., Palmisano G., Palmisano L., Yurdakal S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2012;13:224–245. doi: 10.1016/j.jphotochemrev.2012.04.003. DOI
Hayyan M., Hashim M.A., AlNashef I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016;116:3029–3085. doi: 10.1021/acs.chemrev.5b00407. PubMed DOI
Alberti A., Macciantelli D. In: Electron Paramagnetic Resonance: A Practitioner’s Toolkit. Brustolon M., Giamello E., editors. John Wiley & Sons; Hoboken, NJ, USA: 2009. 287p
Paušová Š., Pacileo L., Baudys M., Hrubantová A., Neumann-Spallart M., Dvoranová D., Brezova V., Krýsa J. Active carbon/TiO2 composites for photocatalytic decomposition of benzoic acid in water and toluene in air. Catal. Today. 2020 doi: 10.1016/j.cattod.2020.06.048. DOI
Nikokavoura A., Trapalis C. Graphene and g-C3N4 based photocatalysts for NOx removal: A review. Appl. Surf. Sci. 2018;430:18–52. doi: 10.1016/j.apsusc.2017.08.192. DOI
The role of guanidine hydrochloride in graphitic carbon nitride synthesis