Comparison of Graphitic Carbon Nitrides Synthetized from Melamine and Melamine-Cyanurate Complex: Characterization and Photocatalytic Decomposition of Ofloxacin and Ampicillin

. 2021 Apr 14 ; 14 (8) : . [epub] 20210414

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33919916

Grantová podpora
19-15199S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000853 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098 Ministerstvo Školství, Mládeže a Tělovýchovy
SP 2021/46 Vysoká Škola Bánská - Technická Univerzita Ostrava

Graphitic carbon nitride (g-C3N4, hereafter abbreviated as CN) was prepared by the heating of melamine (CN-M) and melamine-cyanurate complex (CN-MCA), respectively, in air at 550 °C for 4 h. The specific surface area (SSA) of CN-M and CN-MCA was 12 m2 g-1 and 225 m2g-1 and the content of oxygen was 0.62 wt.% and 1.88 wt.%, respectively. The band gap energy (Eg) of CN-M was 2.64 eV and Eg of CN-MCA was 2.73 eV. The photocatalytic activity of the CN materials was tested by means of the decomposition of antibiotics ofloxacin and ampicillin under LED irradiation of 420 nm. The activity of CN-MCA was higher due to its high SSA, which was determined based on the physisorption of nitrogen. Ofloxacin was decomposed more efficiently than ampicillin in the presence of both photocatalysts.

Zobrazit více v PubMed

Dong Y., Wang Q., Wu H., Chen Y., Lu C.-H., Chi Y., Yang H.-H. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI

Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano Micro Lett. 2017;9:1–21. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC

Safaei J., Mohamed N.A., Noh M.F.M., Soh M.F., Ludin N.A., Ibrahim M.A., Isahak W.N.R.W., Teridi M.A.M. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI

Barrio J., Volokh M., Shalom M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A. 2020;8:11075–11116. doi: 10.1039/D0TA01973A. DOI

Mamba G., Mishra A. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI

Ong W.-J., Tan L.-L., Lling-Lling T., Yong S.-T., Chai S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI

Xu B., Ahmed M.B., Zhou J.L., Altaee A., Xu G., Wu M. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. Sci. Total. Environ. 2018;633:546–559. doi: 10.1016/j.scitotenv.2018.03.206. PubMed DOI

Hasija V., Raizada P., Sudhaik A., Sharma K., Kumar A., Singh P., Jonnalagadda S.B., Thakur V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today. 2019;15:494–524. doi: 10.1016/j.apmt.2019.04.003. DOI

Fronczak M. Adsorption performance of graphitic carbon nitride-based materials: Current state of the art. J. Environ. Chem. Eng. 2020;8:104411. doi: 10.1016/j.jece.2020.104411. DOI

Li Y., Zhang D., Fan J., Xiang Q. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021;42:627–636. doi: 10.1016/S1872-2067(20)63684-1. DOI

Liao G., Gong Y., Zhang L., Gao H., Yang G.-J., Fang B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019;12:2080–2147. doi: 10.1039/C9EE00717B. DOI

Xiong M., Rong Q., Meng H.-M., Zhang X.-B. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens. Bioelectron. 2017;89:212–223. doi: 10.1016/j.bios.2016.03.043. PubMed DOI

Cheng N., Jiang P., Liu Q., Tian J., Asiri A.M., Sun X. Graphitic carbon nitride nanosheets: One-step, high-yield synthesis and application for Cu2+detection. Analyst. 2014;139:5065–5068. doi: 10.1039/C4AN00914B. PubMed DOI

Liao G., He F., Li Q., Zhong L., Zhao R., Che H., Gao H., Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020;112:100666. doi: 10.1016/j.pmatsci.2020.100666. DOI

Seto C.T., Whitesides G.M. Self-assembly based on the cyanuric acid-melamine lattice. J. Am. Chem. Soc. 1990;112:6409–6411. doi: 10.1021/ja00173a046. DOI

Tebby C., Brochot C., Dorne J.-L., Beaudouin R. Investigating the interaction between melamine and cyanuric acid using a Physiologically-Based Toxicokinetic model in rainbow trout. Toxicol. Appl. Pharmacol. 2019;370:184–195. doi: 10.1016/j.taap.2019.03.021. PubMed DOI

Jun Y.-S., Lee E.Z., Wang X., Hong W.H., Stucky G.D., Thomas A. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Adv. Funct. Mater. 2013;23:3661–3667. doi: 10.1002/adfm.201203732. DOI

Whitesides G., Mathias J., Seto C. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science. 1991;254:1312–1319. doi: 10.1126/science.1962191. PubMed DOI

Guo Y., Li J., Yuan Y., Li L., Zhang M., Zhou C., Lin Z. A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation. Angew. Chem. Int. Ed. 2016;55:14693–14697. doi: 10.1002/anie.201608453. PubMed DOI

Wang Y., Wang X., Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2011;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI

Zhao S., Zhang Y., Zhou Y., Wang Y., Qiu K., Zhang C., Fang J., Sheng X. Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon. 2018;126:247–256. doi: 10.1016/j.carbon.2017.10.033. DOI

Jiang R., Lu G., Zhou R., Yang H., Yan Z., Wu D., Liu J., Nkoom M. Switching g-C3N4 morphology from double-walled to single-walled microtubes induced high photocatalytic H2-production performance. J. Alloy. Compd. 2020;820:153166. doi: 10.1016/j.jallcom.2019.153166. DOI

Zhao Z., Dai Y., Ge G., Wang G. Explosive Decomposition of a Melamine-Cyanuric Acid Supramolecular Assembly for Fabricating Defect-Rich Nitrogen-Doped Carbon Nanotubes with Significantly Promoted Catalysis. Chem. A Eur. J. 2015;21:8004–8009. doi: 10.1002/chem.201500316. PubMed DOI

Che H., Che G., Zhou P., Song N., Li C., Li C., Liu C., Liu X., Dong H. Precursor-reforming strategy induced g-C3N4 microtubes with spatial anisotropic charge separation established by conquering hydrogen bond for enhanced photocatalytic H2-production performance. J. Colloid Interface Sci. 2019;547:224–233. doi: 10.1016/j.jcis.2019.03.106. PubMed DOI

Xie M., Wei W., Jiang Z., Xu Y., Xie J. Carbon nitride nanowires/nanofibers: A novel template-free synthesis from a cyanuric chloride–melamine precursor towards enhanced adsorption and visible-light photocatalytic performance. Ceram. Int. 2016;42:4158–4170. doi: 10.1016/j.ceramint.2015.11.089. DOI

Duan Y., Li X., Lv K., Zhao L., Liu Y. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Appl. Surf. Sci. 2019;492:166–176. doi: 10.1016/j.apsusc.2019.06.125. DOI

Tong Z., Yang D., Zhao X., Shi J., Ding F., Zou X., Jiang Z. Bio-inspired synthesis of three-dimensional porous g-C3N4@carbon microflowers with enhanced oxygen evolution reactivity. Chem. Eng. J. 2018;337:312–321. doi: 10.1016/j.cej.2017.12.064. DOI

Liu Y., Guo X., Chen Z., Zhang W., Wang Y., Zheng Y., Tang X., Zhang M., Peng Z., Li R., et al. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Appl. Catal. B Environ. 2020;266:118624. doi: 10.1016/j.apcatb.2020.118624. DOI

Qi Y., Xu J., Wang C., Zhan T., Wang L. Synthesis of Holey Graphitic Carbon Nitride with Highly Enhanced Photocatalytic Reduction Activity via Melamine-cyanuric Acid Precursor Route. Chem. Res. Chin. Univ. 2020;36:1024–1031. doi: 10.1007/s40242-020-0067-5. DOI

Liu Q., Wang X., Yang Q., Zhang Z., Fang X. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018;450:46–56. doi: 10.1016/j.apsusc.2018.04.175. DOI

De Sarro A., De Sarro G. Adverse Reactions to Fluoroquinolones. An Overview on Mechanistic Aspects. Curr. Med. Chem. 2001;8:371–384. doi: 10.2174/0929867013373435. PubMed DOI

Rouveix B. Antibiotic Safety Assessment. Int. J. Antimicrob. Agents. 2003;21:215–221. doi: 10.1016/S0924-8579(02)00354-0. PubMed DOI

Drawz S.M., Bonomo R.A. Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 2010;23:160–201. doi: 10.1128/CMR.00037-09. PubMed DOI PMC

Falcone M., Russo A., Venditti M., Marco F., Alessandro R., Mario V. Optimizing antibiotic therapy of bacteremia and endocarditis due to staphylococci and enterococci: New insights and evidence from the literature. J. Infect. Chemother. 2015;21:330–339. doi: 10.1016/j.jiac.2015.02.012. PubMed DOI

Sousa J.C., Ribeiro A.R., Barbosa M.O., Pereira M.F.R., Silva A.M. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018;344:146–162. doi: 10.1016/j.jhazmat.2017.09.058. PubMed DOI

Kovalakova P., Cizmas L., McDonald T.J., Marsalek B., Feng M., Sharma V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351. PubMed DOI

Bouki C., Venieri D., Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013;91:1–9. doi: 10.1016/j.ecoenv.2013.01.016. PubMed DOI

Praus P., Smýkalová A., Foniok K., Matějka V., Kormunda M., Smetana B., Cvejn D. The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitrogen atmosphere. Appl. Surf. Sci. 2020;529:147086. doi: 10.1016/j.apsusc.2020.147086. DOI

Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI

Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI

Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893–4908. doi: 10.1039/b800274f. DOI

Goettmann F., Fischer A., Antonietti M., Thomas A. Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene. Angew. Chem. Int. Ed. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI

Vu N., Nguyen C., Kaliaguine S., Do T. Synthesis of g-C3N4 Nanosheets by Using a Highly Condensed Lamellar Crystalline Melamine–Cyanuric Acid Supramolecular Complex for Enhanced Solar Hydrogen Generation. ChemSusChem. 2019;12:291–302. doi: 10.1002/cssc.201802394. PubMed DOI

Komatsu T. The First Synthesis and Characterization of Cyameluric High Polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI

Zimmerman J.L., Williams R., Khabashesku V.N., Margrave J.L. Preparation of sphere-shaped nanoscale carbon nitride polymer. Russ. Chem. Bull. 2001;50:2020–2027. doi: 10.1023/A:1015020511471. DOI

Rodríguez E.M., Márquez G., Tena M., Álvarez P.M., Beltrán F.J. Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin. Appl. Catal. B Environ. 2015;178:44–53. doi: 10.1016/j.apcatb.2014.11.002. DOI

Chen P., Blaney L., Cagnetta G., Huang J., Wang B., Wang Y., Deng S., Yu G. Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. Environ. Sci. Technol. 2019;53:1564–1575. doi: 10.1021/acs.est.8b05827. PubMed DOI

Konstantinou I.K., A Albanis T. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010. DOI

Sturini M., Speltini A., Maraschi F., Vinci G., Profumo A., Pretali L., Albini A., Malavasi L. g-C3N4-promoted degradation of ofloxacin antibiotic in natural waters under simulated sunlight. Environ. Sci. Pollut. Res. 2016;24:4153–4161. doi: 10.1007/s11356-016-8156-1. PubMed DOI

Wang Y., Wang F., Feng Y., Xie Z., Zhang Q., Jin X., Liu H., Liu Y., Lv W., Liu G. Facile synthesis of carbon quantum dots loaded with mesoporous g-C3N4 for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics. Dalton Trans. 2017;47:1284–1293. doi: 10.1039/C7DT04360K. PubMed DOI

Giannakopoulou T., Papailias I., Todorova N., Boukos N., Liu Y., Yu J., Trapalis C. Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017;310:571–580. doi: 10.1016/j.cej.2015.12.102. DOI

Wood P.M. The potential diagram for oxygen at pH. Biochem. J. 1988;253:287–289. doi: 10.1042/bj2530287. PubMed DOI PMC

Baudys M., Paušová Š., Praus P., Brezová V., Dvoranová D., Barbieriková Z., Krýsa J. Graphitic Carbon Nitride for Photocatalytic Air Treatment. Material. 2020;13:3038. doi: 10.3390/ma13133038. PubMed DOI PMC

Gulaboski R., Mirčeski V., Kappl R., Hoth M., Bozem M. Review—Quantification of Hydrogen Peroxide by Electrochemical Methods and Electron Spin Resonance Spectroscopy. J. Electrochem. Soc. 2019;166:G82–G101. doi: 10.1149/2.1061908jes. DOI

Torres-Pinto A., Sampaio M.J., Silva C.G., Faria J.L., Silva A.M. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl. Catal. B Environ. 2019;252:128–137. doi: 10.1016/j.apcatb.2019.03.040. DOI

Chen T.-S., Huang K.-L., Chen J.-L. An Electrochemical Approach to Simultaneous Determination of Acetaminophen and Ofloxacin. Bull. Environ. Contam. Toxicol. 2012;89:1284–1288. doi: 10.1007/s00128-012-0833-2. PubMed DOI

Feier B., Ionel I., Cristea C., Săndulescu R. Electrochemical behaviour of several penicillins at high potential. New J. Chem. 2017;41:12947–12955. doi: 10.1039/C7NJ01729D. DOI

Babić S., Horvat A.J., Pavlović D.M., Kaštelan-Macan M. Determination of pKa values of active pharmaceutical ingredients. TrAC Trends Anal. Chem. 2007;26:1043–1061. doi: 10.1016/j.trac.2007.09.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...