Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03777S
Czech Science Foundation
GAUK 406119
Grant Agency of Charles University
PubMed
33121177
PubMed Central
PMC7663402
DOI
10.3390/ijms21217995
PII: ijms21217995
Knihovny.cz E-zdroje
- Klíčová slova
- TRP channel, mutagenesis, phosphomimetic, phosphorylation, protein kinases, transient receptor potential ankyrin 1,
- MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- kationtový kanál TRPA1 chemie genetika metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace * MeSH
- proteinové domény MeSH
- serin metabolismus MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kationtový kanál TRPA1 MeSH
- serin MeSH
- TRPA1 protein, human MeSH Prohlížeč
The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is an integrative molecular sensor for detecting environmental irritant compounds, endogenous proalgesic and inflammatory agents, pressure, and temperature. Different post-translational modifications participate in the discrimination of the essential functions of TRPA1 in its physiological environment, but the underlying structural bases are poorly understood. Here, we explored the role of the cytosolic N-terminal residue Ser602 located near a functionally important allosteric coupling domain as a potential target of phosphorylation. The phosphomimetic mutation S602D completely abrogated channel activation, whereas the phosphonull mutations S602G and S602N produced a fully functional channel. Using mutagenesis, electrophysiology, and molecular simulations, we investigated the possible structural impact of a modification (mutation or phosphorylation) of Ser602 and found that this residue represents an important regulatory site through which the intracellular signaling cascades may act to reversibly restrict or "dampen" the conformational space of the TRPA1 channel and promote its transitions to the closed state.
Zobrazit více v PubMed
Voolstra O., Huber A. Post-Translational Modifications of TRP Channels. Cells. 2014;3:258–287. doi: 10.3390/cells3020258. PubMed DOI PMC
Andrade E.L., Meotti F.C., Calixto J.B. TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther. 2012;133:189–204. doi: 10.1016/j.pharmthera.2011.10.008. PubMed DOI
Story G.M., Peier A.M., Reeve A.J., Eid S.R., Mosbacher J., Hricik T.R., Earley T.J., Hergarden A.C., Andersson D.A., Hwang S.W., et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. doi: 10.1016/S0092-8674(03)00158-2. PubMed DOI
Bautista D.M., Jordt S.E., Nikai T., Tsuruda P.R., Read A.J., Poblete J., Yamoah E.N., Basbaum A.I., Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–1282. doi: 10.1016/j.cell.2006.02.023. PubMed DOI
Atoyan R., Shander D., Botchkareva N.V. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J. Investig. Dermatol. 2009;129:2312–2315. doi: 10.1038/jid.2009.58. PubMed DOI
Earley S., Gonzales A.L., Crnich R. Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ. Res. 2009;104:987–994. doi: 10.1161/CIRCRESAHA.108.189530. PubMed DOI PMC
Nozawa K., Kawabata-Shoda E., Doihara H., Kojima R., Okada H., Mochizuki S., Sano Y., Inamura K., Matsushime H., Koizumi T., et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl. Acad. Sci. USA. 2009;106:3408–3413. doi: 10.1073/pnas.0805323106. PubMed DOI PMC
Okada Y., Reinach P.S., Shirai K., Kitano-Izutani A., Miyajima M., Yamanaka O., Sumioka T., Saika S. Transient Receptor Potential Channels and Corneal Stromal Inflammation. Cornea. 2015;34(Suppl. 11):S136–S141. doi: 10.1097/ICO.0000000000000602. PubMed DOI
Nassini R., Pedretti P., Moretto N., Fusi C., Carnini C., Facchinetti F., Viscomi A.R., Pisano A.R., Stokesberry S., Brunmark C., et al. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS ONE. 2012;7:e42454. doi: 10.1371/journal.pone.0042454. PubMed DOI PMC
Mukhopadhyay I., Gomes P., Aranake S., Shetty M., Karnik P., Damle M., Kuruganti S., Thorat S., Khairatkar-Joshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J. Recept. Signal Transduct. 2011;31:350–358. doi: 10.3109/10799893.2011.602413. PubMed DOI
Corey D.P., Garcia-Anoveros J., Holt J.R., Kwan K.Y., Lin S.Y., Vollrath M.A., Amalfitano A., Cheung E.L., Derfler B.H., Duggan A., et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 2004;432:723–730. doi: 10.1038/nature03066. PubMed DOI
Shigetomi E., Tong X., Kwan K.Y., Corey D.P., Khakh B.S. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat. Neurosci. 2011;15:70–80. doi: 10.1038/nn.3000. PubMed DOI PMC
Hamilton N.B., Kolodziejczyk K., Kougioumtzidou E., Attwell D. Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature. 2016;529:523–527. doi: 10.1038/nature16519. PubMed DOI PMC
De Logu F., Nassini R., Materazzi S., Carvalho Goncalves M., Nosi D., Rossi Degl’Innocenti D., Marone I.M., Ferreira J., Li Puma S., Benemei S., et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun. 2017;8:1887. doi: 10.1038/s41467-017-01739-2. PubMed DOI PMC
El Karim I.A., Linden G.J., Curtis T.M., About I., McGahon M.K., Irwin C.R., Lundy F.T. Human odontoblasts express functional thermo-sensitive TRP channels: Implications for dentin sensitivity. Pain. 2011;152:2211–2223. doi: 10.1016/j.pain.2010.10.016. PubMed DOI
Kochukov M.Y., McNearney T.A., Fu Y., Westlund K.N. Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am. J. Physiol. Cell Physiol. 2006;291:C424–C432. doi: 10.1152/ajpcell.00553.2005. PubMed DOI
Nilius B., Appendino G., Owsianik G. The transient receptor potential channel TRPA1: From gene to pathophysiology. Pflug. Arch. 2012;464:425–458. doi: 10.1007/s00424-012-1158-z. PubMed DOI
Talavera K., Startek J.B., Alvarez-Collazo J., Boonen B., Alpizar Y.A., Sanchez A., Naert R., Nilius B. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol. Rev. 2019;100:725–803. doi: 10.1152/physrev.00005.2019. PubMed DOI
Viana F. TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. J. Physiol. 2016;594:4151–4169. doi: 10.1113/JP270935. PubMed DOI PMC
Zygmunt P.M., Hogestatt E.D. TRPA1. Handb. Exp. Pharmacol. 2014;222:583–630. doi: 10.1007/978-3-642-54215-2_23. PubMed DOI
Taylor-Clark T.E., Undem B.J., Macglashan D.W., Jr., Ghatta S., Carr M.J., McAlexander M.A. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1) Mol. Pharmacol. 2008;73:274–281. doi: 10.1124/mol.107.040832. PubMed DOI
Cruz-Orengo L., Dhaka A., Heuermann R.J., Young T.J., Montana M.C., Cavanaugh E.J., Kim D., Story G.M. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain. 2008;4:30. doi: 10.1186/1744-8069-4-30. PubMed DOI PMC
Redmond W.J., Gu L., Camo M., McIntyre P., Connor M. Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1. PeerJ. 2014;2:e248. doi: 10.7717/peerj.248. PubMed DOI PMC
Wang S., Dai Y., Fukuoka T., Yamanaka H., Kobayashi K., Obata K., Cui X., Tominaga M., Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: A molecular mechanism of inflammatory pain. Brain. 2008;131:1241–1251. doi: 10.1093/brain/awn060. PubMed DOI
Brackley A.D., Gomez R., Guerrero K.A., Akopian A.N., Glucksman M.J., Du J., Carlton S.M., Jeske N.A. A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci. Rep. 2017;7:1842. doi: 10.1038/s41598-017-01999-4. PubMed DOI PMC
Meents J.E., Fischer M.J., McNaughton P.A. Sensitization of TRPA1 by Protein Kinase A. PLoS ONE. 2017;12:e0170097. doi: 10.1371/journal.pone.0170097. PubMed DOI PMC
Anand U., Otto W.R., Facer P., Zebda N., Selmer I., Gunthorpe M.J., Chessell I.P., Sinisi M., Birch R., Anand P. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci. Lett. 2008;438:221–227. doi: 10.1016/j.neulet.2008.04.007. PubMed DOI
Obata K., Katsura H., Mizushima T., Yamanaka H., Kobayashi K., Dai Y., Fukuoka T., Tokunaga A., Tominaga M., Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Investig. 2005;115:2393–2401. doi: 10.1172/JCI25437. PubMed DOI PMC
Sulak M.A., Ghosh M., Sinharoy P., Andrei S.R., Damron D.S. Modulation of TRPA1 channel activity by Cdk5 in sensory neurons. Channels. 2018;12:65–75. doi: 10.1080/19336950.2018.1424282. PubMed DOI PMC
Hall B.E., Prochazkova M., Sapio M.R., Minetos P., Kurochkina N., Binukumar B.K., Amin N.D., Terse A., Joseph J., Raithel S.J., et al. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Sci. Rep. 2018;8:1177. doi: 10.1038/s41598-018-19532-6. PubMed DOI PMC
Dai Y., Wang S., Tominaga M., Yamamoto S., Fukuoka T., Higashi T., Kobayashi K., Obata K., Yamanaka H., Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Investig. 2007;117:1979–1987. doi: 10.1172/JCI30951. PubMed DOI PMC
Zhang X., Li L., McNaughton P.A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron. 2008;59:450–461. doi: 10.1016/j.neuron.2008.05.015. PubMed DOI
Zimova L., Barvikova K., Macikova L., Vyklicka L., Sinica V., Barvik I., Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front. Physiol. 2020;11:189. doi: 10.3389/fphys.2020.00189. PubMed DOI PMC
Miyano K., Shiraishi S., Minami K., Sudo Y., Suzuki M., Yokoyama T., Terawaki K., Nonaka M., Murata H., Higami Y., et al. Carboplatin Enhances the Activity of Human Transient Receptor Potential Ankyrin 1 through the Cyclic AMP-Protein Kinase A-A-Kinase Anchoring Protein (AKAP) Pathways. Int. J. Mol. Sci. 2019;20:3271. doi: 10.3390/ijms20133271. PubMed DOI PMC
Wang S., Kobayashi K., Kogure Y., Yamanaka H., Yamamoto S., Yagi H., Noguchi K., Dai Y. Negative Regulation of TRPA1 by AMPK in Primary Sensory Neurons as a Potential Mechanism of Painful Diabetic Neuropathy. Diabetes. 2018;67:98–109. doi: 10.2337/db17-0503. PubMed DOI
Morgan K., Sadofsky L.R., Morice A.H. Genetic variants affecting human TRPA1 or TRPM8 structure can be classified in vitro as ‘well expressed’, ‘poorly expressed’ or ‘salvageable’. Biosci. Rep. 2015;35:e00255. doi: 10.1042/BSR20150108. PubMed DOI PMC
Kadkova A., Synytsya V., Krusek J., Zimova L., Vlachova V. Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol. Res. 2017;66:425–439. doi: 10.33549/physiolres.933553. PubMed DOI
Meents J.E., Ciotu C.I., Fischer M.J.M. TRPA1: A molecular view. J. Neurophysiol. 2019;121:427–443. doi: 10.1152/jn.00524.2018. PubMed DOI
Zhao J., Lin King J.V., Paulsen C.E., Cheng Y., Julius D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature. 2020;585:141–145. doi: 10.1038/s41586-020-2480-9. PubMed DOI PMC
Suo Y., Wang Z., Zubcevic L., Hsu A.L., He Q., Borgnia M.J., Ji R.R., Lee S.Y. Structural insights into Electrophile Irritant Sensing by the human TRPA1 channel. Neuron. 2020;105:882–894. doi: 10.1016/j.neuron.2019.11.023. PubMed DOI PMC
Savage S.R., Zhang B. Using phosphoproteomics data to understand cellular signaling: A comprehensive guide to bioinformatics resources. Clin. Proteom. 2020;17:27. doi: 10.1186/s12014-020-09290-x. PubMed DOI PMC
Paulsen C.E., Armache J.P., Gao Y., Cheng Y., Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;520:511–517. doi: 10.1038/nature14367. PubMed DOI PMC
Sura L., Zima V., Marsakova L., Hynkova A., Barvik I., Vlachova V. C-terminal Acidic Cluster Is Involved in Ca2+-induced Regulation of Human Transient Receptor Potential Ankyrin 1 Channel. J. Biol. Chem. 2012;287:18067–18077. doi: 10.1074/jbc.M112.341859. PubMed DOI PMC
Hynkova A., Marsakova L., Vaskova J., Vlachova V. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci. Rep. 2016;6:28700. doi: 10.1038/srep28700. PubMed DOI PMC
Hunter T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. B-Biol. Sci. 2012;367:2513–2516. doi: 10.1098/rstb.2012.0013. PubMed DOI PMC
Dephoure N., Gould K.L., Gygi S.P., Kellogg D.R. Mapping and analysis of phosphorylation sites: A quick guide for cell biologists. Mol. Biol. Cell. 2013;24:535–542. doi: 10.1091/mbc.e12-09-0677. PubMed DOI PMC
Hornbeck P.V., Kornhauser J.M., Latham V., Murray B., Nandhikonda V., Nord A., Skrzypek E., Wheeler T., Zhang B., Gnad F. 15 years of PhosphoSitePlus(R): Integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 2019;47:D433–D441. doi: 10.1093/nar/gky1159. PubMed DOI PMC
Needham E.J., Parker B.L., Burykin T., James D.E., Humphrey S.J. Illuminating the dark phosphoproteome. Sci. Signal. 2019;12:eaau8645. doi: 10.1126/scisignal.aau8645. PubMed DOI
Wang C., Xu H., Lin S., Deng W., Zhou J., Zhang Y., Shi Y., Peng D., Xue Y. GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins. Genom. Proteom. Bioinform. 2020;18:72–80. doi: 10.1016/j.gpb.2020.01.001. PubMed DOI PMC
Patrick R., Kobe B., Le Cao K.A., Boden M. PhosphoPICK-SNP: Quantifying the effect of amino acid variants on protein phosphorylation. Bioinformatics. 2017;33:1773–1781. doi: 10.1093/bioinformatics/btx072. PubMed DOI
Blom N., Sicheritz-Ponten T., Gupta R., Gammeltoft S., Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–1649. doi: 10.1002/pmic.200300771. PubMed DOI
Horn H., Schoof E.M., Kim J., Robin X., Miller M.L., Diella F., Palma A., Cesareni G., Jensen L.J., Linding R. KinomeXplorer: An integrated platform for kinome biology studies. Nat. Methods. 2014;11:603–604. doi: 10.1038/nmeth.2968. PubMed DOI
Li T., Li F., Zhang X. Prediction of kinase-specific phosphorylation sites with sequence features by a log-odds ratio approach. Proteins. 2008;70:404–414. doi: 10.1002/prot.21563. PubMed DOI
Gao J., Thelen J.J., Dunker A.K., Xu D. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol. Cell. Proteom. MCP. 2010;9:2586–2600. doi: 10.1074/mcp.M110.001388. PubMed DOI PMC
Pearlman S.M., Serber Z., Ferrell J.E., Jr. A mechanism for the evolution of phosphorylation sites. Cell. 2011;147:934–946. doi: 10.1016/j.cell.2011.08.052. PubMed DOI PMC
Gnad F., Ren S., Cox J., Olsen J.V., Macek B., Oroshi M., Mann M. PHOSIDA (phosphorylation site database): Management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 2007;8:R250. doi: 10.1186/gb-2007-8-11-r250. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Beglov D., Roux B. Finite Representation of an Infinite Bulk System-Solvent Boundary Potential for Computer-Simulations. J. Chem. Phys. 1994;100:9050–9063. doi: 10.1063/1.466711. DOI
Schlenkrich M., Brickmann J., MacKerell A.D., Jr., Karplus M. An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In: Merz K. Jr., Roux B., editors. Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhauser Boston; Cambridge, MA, USA: 1996. pp. 31–81.
MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289. PubMed DOI PMC
Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI