C-terminal acidic cluster is involved in Ca2+-induced regulation of human transient receptor potential ankyrin 1 channel
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22461626
PubMed Central
PMC3365772
DOI
10.1074/jbc.m112.341859
PII: S0021-9258(20)50052-5
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- kationtové kanály TRP chemie metabolismus fyziologie MeSH
- kationtový kanál TRPA1 MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- proteiny nervové tkáně chemie metabolismus fyziologie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vápníkové kanály chemie metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationtové kanály TRP MeSH
- kationtový kanál TRPA1 MeSH
- proteiny nervové tkáně MeSH
- TRPA1 protein, human MeSH Prohlížeč
- vápník MeSH
- vápníkové kanály MeSH
The transient receptor potential ankyrin 1 (TRPA1) channel is a Ca(2+)-permeable cation channel whose activation results from a complex synergy between distinct activation sites, one of which is especially important for determining its sensitivity to chemical, voltage and cold stimuli. From the cytoplasmic side, TRPA1 is critically regulated by Ca(2+) ions, and this mechanism represents a self-modulating feedback loop that first augments and then inhibits the initial activation. We investigated the contribution of the cluster of acidic residues in the distal C terminus of TRPA1 in these processes using mutagenesis, whole cell electrophysiology, and molecular dynamics simulations and found that the neutralization of four conserved residues, namely Glu(1077) and Asp(1080)-Asp(1082) in human TRPA1, had strong effects on the Ca(2+)- and voltage-dependent potentiation and/or inactivation of agonist-induced responses. The surprising finding was that truncation of the C terminus by only 20 residues selectively slowed down the Ca(2+)-dependent inactivation 2.9-fold without affecting other functional parameters. Our findings identify the conserved acidic motif in the C terminus that is actively involved in TRPA1 regulation by Ca(2+).
Zobrazit více v PubMed
Story G. M., Peier A. M., Reeve A. J., Eid S. R., Mosbacher J., Hricik T. R., Earley T. J., Hergarden A. C., Andersson D. A., Hwang S. W., McIntyre P., Jegla T., Bevan S., Patapoutian A. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 PubMed
Jordt S. E., Bautista D. M., Chuang H. H., McKemy D. D., Zygmunt P. M., Högestätt E. D., Meng I. D., Julius D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 PubMed
Hu H., Bandell M., Petrus M. J., Zhu M. X., Patapoutian A. (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat. Chem. Biol. 5, 183–190 PubMed PMC
Bandell M., Story G. M., Hwang S. W., Viswanath V., Eid S. R., Petrus M. J., Earley T. J., Patapoutian A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 PubMed
Bautista D. M., Movahed P., Hinman A., Axelsson H. E., Sterner O., Högestätt E. D., Julius D., Jordt S. E., Zygmunt P. M. (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. U.S.A. 102, 12248–12252 PubMed PMC
Macpherson L. J., Geierstanger B. H., Viswanath V., Bandell M., Eid S. R., Hwang S., Patapoutian A. (2005) The pungency of garlic. Activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 PubMed
Corey D. P., García-Añoveros J., Holt J. R., Kwan K. Y., Lin S. Y., Vollrath M. A., Amalfitano A., Cheung E. L., Derfler B. H., Duggan A., Géléoc G. S., Gray P. A., Hoffman M. P., Rehm H. L., Tamasauskas D., Zhang D. S. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 PubMed
Nagata K., Duggan A., Kumar G., García-Añoveros J. (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 PubMed PMC
Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S. (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res. 1160, 39–46 PubMed
Karashima Y., Talavera K., Everaerts W., Janssens A., Kwan K. Y., Vennekens R., Nilius B., Voets T. (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 106, 1273–1278 PubMed PMC
Nilius B., Prenen J., Owsianik G. (2011) Irritating channels. The case of TRPA1. J. Physiol. 589, 1543–1549 PubMed PMC
Cavanaugh E. J., Simkin D., Kim D. (2008) Activation of transient receptor potential A1 channels by mustard oil, tetrahydrocannabinol and Ca2+ reveals different functional channel states. Neuroscience 154, 1467–1476 PubMed
Patil M. J., Jeske N. A., Akopian A. N. (2010) Transient receptor potential V1 regulates activation and modulation of transient receptor potential A1 by Ca2+. Neuroscience 171, 1109–1119 PubMed PMC
Schmidt M., Dubin A. E., Petrus M. J., Earley T. J., Patapoutian A. (2009) Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 PubMed PMC
Doerner J. F., Gisselmann G., Hatt H., Wetzel C. H. (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J. Biol. Chem. 282, 13180–13189 PubMed
Zurborg S., Yurgionas B., Jira J. A., Caspani O., Heppenstall P. A. (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277–279 PubMed
Wang Y. Y., Chang R. B., Waters H. N., McKemy D. D., Liman E. R. (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 PubMed PMC
Samad A., Sura L., Benedikt J., Ettrich R., Minofar B., Teisinger J., Vlachova V. (2011) The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem. J. 433, 197–204 PubMed PMC
Xiao Q., Prussia A., Yu K., Cui Y. Y., Hartzell H. C. (2008) Regulation of bestrophin Cl channels by calcium. Role of the C terminus. J. Gen. Physiol. 132, 681–692 PubMed PMC
Yuan P., Leonetti M. D., Pico A. R., Hsiung Y., MacKinnon R. (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329, 182–186 PubMed PMC
Susankova K., Ettrich R., Vyklicky L., Teisinger J., Vlachova V. (2007) Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J. Neurosci. 27, 7578–7585 PubMed PMC
Vlachová V., Teisinger J., Susánková K., Lyfenko A., Ettrich R., Vyklický L. (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, 1340–1350 PubMed PMC
Dittert I., Benedikt J., Vyklický L., Zimmermann K., Reeh P. W., Vlachová V. (2006) Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods 151, 178–185 PubMed
Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 PubMed PMC
Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326 PubMed
Case D. A., Darden T. A., Cheatham T. E., III, Simmerling C. L., Wang J., Duke R. E., Luo R., Walker R. C., Zhang W., Merz K. M., Roberts B., Wang B., Hayik S., Roitberg A., Seabra G., Kolossvai I., Wong K. F., Paesani F., Vanicek J., Liu J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Cai Q., Ye X., Wang J., Hsieh M. J., Cui G., Roe D. R., Mathews D. H., Seetin M. G., Sagui C., Babin V., Luchko T., Gusarov S., Kovalenko A., Kollman P. A. (2010) AMBER 11, University of California, San Francisco
Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 PubMed PMC
Harvey M., Giupponi G., De Fabritiis G. (2009) ACEMD: Accelerated molecular dynamics simulations in the microseconds timescale. J. Chem. Theory Comp. 5, 1632–1639 PubMed
Feenstra K. A., Hess B., Berendsen H. J. C. (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comp. Chem. 20, 786–798 PubMed
Humphrey W., Dalke A., Schulten K. (1996) VMD. Visual molecular dynamics. J. Mol. Graph. 14, 33–38 PubMed
Cordero-Morales J. F., Gracheva E. O., Julius D. (2011) Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. U.S.A. 108, E1184–E1191 PubMed PMC
Köttgen M., Benzing T., Simmen T., Tauber R., Buchholz B., Feliciangeli S., Huber T. B., Schermer B., Kramer-Zucker A., Höpker K., Simmen K. C., Tschucke C. C., Sandford R., Kim E., Thomas G., Walz G. (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24, 705–716 PubMed PMC
Latorre R., Morera F. J., Zaelzer C. (2010) Allosteric interactions and the modular nature of the voltage- and Ca2+-activated (BK) channel. J. Physiol. 588, 3141–3148 PubMed PMC
Lightstone F. C., Schwegler E., Allesch M., Gygi F., Galli G. (2005) A first-principles molecular dynamics study of calcium in water. Chemphyschem 6, 1745–1749 PubMed
Javaherian A. D., Yusifov T., Pantazis A., Franklin S., Gandhi C. S., Olcese R. (2011) Metal-driven operation of the human large-conductance voltage- and Ca2+-dependent potassium channel (BK) gating ring apparatus. J. Biol. Chem. 286, 20701–20709 PubMed PMC
Cvetkov T. L., Huynh K. W., Cohen M. R., Moiseenkova-Bell V. Y. (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem. 286, 38168–38176 PubMed PMC
Kremeyer B., Lopera F., Cox J. J., Momin A., Rugiero F., Marsh S., Woods C. G., Jones N. G., Paterson K. J., Fricker F. R., Villegas A., Acosta N., Pineda-Trujillo N. G., Ramírez J. D., Zea J., Burley M. W., Bedoya G., Bennett D. L., Wood J. N., Ruiz-Linares A. (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 PubMed PMC
Salazar M., Moldenhauer H., Baez-Nieto D. (2011) Could an allosteric gating model explain the role of TRPA1 in cold hypersensitivity? J. Neurosci. 31, 5554–5556 PubMed PMC
Smith-Maxwell C. J., Ledwell J. L., Aldrich R. W. (1998) Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J. Gen. Physiol. 111, 399–420 PubMed PMC
Brauchi S., Orta G., Mascayano C., Salazar M., Raddatz N., Urbina H., Rosenmann E., Gonzalez-Nilo F., Latorre R. (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl. Acad. Sci. U.S.A. 104, 10246–10251 PubMed PMC
Boukalova S., Marsakova L., Teisinger J., Vlachova V. (2010) Conserved residues within the putative S4-S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. J. Biol. Chem. 285, 41455–41462 PubMed PMC
Voets T., Owsianik G., Janssens A., Talavera K., Nilius B. (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat. Chem. Biol. 3, 174–182 PubMed
Miller M. L., Jensen L. J., Diella F., Jørgensen C., Tinti M., Li L., Hsiung M., Parker S. A., Bordeaux J., Sicheritz-Ponten T., Olhovsky M., Pasculescu A., Alexander J., Knapp S., Blom N., Bork P., Li S., Cesareni G., Pawson T., Turk B. E., Yaffe M. B., Brunak S., Linding R. (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci. Signal. 1, ra2. PubMed PMC
Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology
Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel