N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27345869
PubMed Central
PMC4922051
DOI
10.1038/srep28700
PII: srep28700
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- ankyrinová repetice MeSH
- cyklin-dependentní kinasa 5 genetika metabolismus MeSH
- gating iontového kanálu účinky léků genetika MeSH
- HEK293 buňky MeSH
- kationtový kanál TRPA1 genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- oligopeptidy chemie farmakologie MeSH
- proteinové domény MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK5 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 5 MeSH
- kationtový kanál TRPA1 MeSH
- oligopeptidy MeSH
- TRPA1 protein, human MeSH Prohlížeč
Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence.
Zobrazit více v PubMed
Story G. M. et al.. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003). PubMed
Nilius B., Appendino G. & Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Archiv (European Journal of Physiology) 464, 425–458 (2012). PubMed
Moran M. M. Transient receptor potential ankyrin 1 as a target for perioperative pain management. Anesthesiology 117, 8–9 (2012). PubMed
Wilson S. R. et al.. The ion channel TRPA1 is required for chronic itch. J Neurosci 33, 9283–9294 (2013). PubMed PMC
Laursen W. J., Bagriantsev S. N. & Gracheva E. O. TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74, 89–112 (2014). PubMed
Zygmunt P. M. & Hogestatt E. D. Trpa1. Handb Exp Pharmacol 222, 583–630 (2014). PubMed
Doerner J. F., Gisselmann G., Hatt H. & Wetzel C. H. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282, 13180–13189 (2007). PubMed
Zurborg S., Yurgionas B., Jira J. A., Caspani O. & Heppenstall P. A. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10, 277–279 (2007). PubMed
Wang Y. Y., Chang R. B., Waters H. N., McKemy D. D. & Liman E. R. The Nociceptor Ion Channel TRPA1 Is Potentiated and Inactivated by Permeating Calcium Ions. J Biol Chem 283, 32691–32703 (2008). PubMed PMC
Baez-Nieto D., Castillo J. P., Dragicevic C., Alvarez O. & Latorre R. Thermo-TRP channels: biophysics of polymodal receptors. Adv Exp Med Biol 704, 469–490 (2011). PubMed
Wan X. et al.. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation. Pflugers Arch 466, 1273–1287 (2014). PubMed PMC
Palovcak E., Delemotte L., Klein M. L. & Carnevale V. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. The Journal of general physiology 146, 37–50 (2015). PubMed PMC
Paulsen C. E., Armache J. P., Gao Y., Cheng Y. & Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511–517 (2015). PubMed PMC
Cvetkov T. L., Huynh K. W., Cohen M. R. & Moiseenkova-Bell V. Y. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286, 38168–38176 (2011). PubMed PMC
Wang L., Cvetkov T. L., Chance M. R. & Moiseenkova-Bell V. Y. Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287, 6169–6176 (2012). PubMed PMC
Brewster M. S. & Gaudet R. How the TRPA1 receptor transmits painful stimuli: Inner workings revealed by electron cryomicroscopy. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 37, 1184–1192 (2015). PubMed PMC
Hinman A., Chuang H. H., Bautista D. M. & Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103, 19564–19568 (2006). PubMed PMC
Macpherson L. J. et al.. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007). PubMed
Caterina M. J. Chemical biology: sticky spices. Nature 445, 491–492 (2007). PubMed
Nilius B., Prenen J. & Owsianik G. Irritating channels: the case of TRPA1. Journal of Physiology 589, 1543–1549 (2011). PubMed PMC
Cordero-Morales J. F., Gracheva E. O. & Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences of the United States of America 108, E1184–1191 (2011). PubMed PMC
Binder A. et al.. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One 6, e17387 (2011). PubMed PMC
May D. et al.. Differential expression and functionality of TRPA1 protein genetic variants in conditions of thermal stimulation. J Biol Chem 287, 27087–27094 (2012). PubMed PMC
Jabba S. et al.. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82, 1017–1031 (2014). PubMed PMC
Moparthi L. et al.. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci USA 111, 16901–16906 (2014). PubMed PMC
Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4, 372–379 (2008). PubMed PMC
Sotomayor M., Corey D. P. & Schulten K. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13, 669–682 (2005). PubMed
Yuan C. et al.. The study of pH-dependent stability shows that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin. Biochemistry 52, 4848–4857 (2013). PubMed PMC
Guo Y. et al.. Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. J Mol Biol 399, 168–181 (2010). PubMed PMC
Lee W., Strumpfer J., Bennett V., Schulten K. & Marszalek P. E. Mutation of conserved histidines alters tertiary structure and nanomechanics of consensus ankyrin repeats. J Biol Chem 287, 19115–19121 (2012). PubMed PMC
Schmidt M., Dubin A. E., Petrus M. J., Earley T. J. & Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 (2009). PubMed PMC
Li J., Mahajan A. & Tsai M. D. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45, 15168–15178 (2006). PubMed
Dai Y. et al.. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117, 1979–1987 (2007). PubMed PMC
Staruschenko A., Jeske N. A. & Akopian A. N. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285, 15167–15177 (2010). PubMed PMC
Stokes A. et al.. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18, 1584–1594 (2006). PubMed
Morgan K., Sadofsky L. R. & Morice A. H. Genetic variants affecting human TRPA1 or TRPM8 structure can be classified in vitro as ‘well expressed’, ‘poorly expressed’ or ‘salvageable’. Biosci Rep 35, 10.1042/BSR20140061 (2015). PubMed DOI PMC
Zhang X., Li L. & McNaughton P. A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450–461 (2008). PubMed
Pareek T. K. et al.. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci USA 104, 660–665 (2007). PubMed PMC
Liu J., Du J., Yang Y. & Wang Y. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 273, 253–262 (2015). PubMed
Gallazzini M., Yu M. J., Gunaratne R., Burg M. B. & Ferraris J. D. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 24, 4325–4335 (2010). PubMed PMC
Zheng Y. L., Li B. S., Amin N. D., Albers W. & Pant H. C. A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Eur J Biochem 269, 4427–4434 (2002). PubMed
Dhavan R. & Tsai L. H. A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759 (2001). PubMed
Zhong L. et al.. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep 1, 43–55 (2012). PubMed PMC
Takahashi N. et al.. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7, 701–711 (2011). PubMed
Horrigan F. T. & Aldrich R. W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. The Journal of General Physiology 120, 267–305 (2002). PubMed PMC
Brauchi S., Orio P. & Latorre R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101, 15494–15499 (2004). PubMed PMC
Voolstra O. & Huber A. Post-Translational Modifications of TRP Channels. Cells 3, 258–287 (2014). PubMed PMC
Benedikt J., Teisinger J., Vyklicky L. & Vlachova V. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4, 5-bisphosphate. J Neurochem 100, 211–224 (2007). PubMed
Dittert I. et al.. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J Neurosci Methods 151, 178–185 (2006). PubMed
Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology
Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor
Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel