N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

. 2016 Jun 27 ; 6 () : 28700. [epub] 20160627

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27345869

Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence.

Zobrazit více v PubMed

Story G. M. et al.. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003). PubMed

Nilius B., Appendino G. & Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Archiv (European Journal of Physiology) 464, 425–458 (2012). PubMed

Moran M. M. Transient receptor potential ankyrin 1 as a target for perioperative pain management. Anesthesiology 117, 8–9 (2012). PubMed

Wilson S. R. et al.. The ion channel TRPA1 is required for chronic itch. J Neurosci 33, 9283–9294 (2013). PubMed PMC

Laursen W. J., Bagriantsev S. N. & Gracheva E. O. TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74, 89–112 (2014). PubMed

Zygmunt P. M. & Hogestatt E. D. Trpa1. Handb Exp Pharmacol 222, 583–630 (2014). PubMed

Doerner J. F., Gisselmann G., Hatt H. & Wetzel C. H. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282, 13180–13189 (2007). PubMed

Zurborg S., Yurgionas B., Jira J. A., Caspani O. & Heppenstall P. A. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10, 277–279 (2007). PubMed

Wang Y. Y., Chang R. B., Waters H. N., McKemy D. D. & Liman E. R. The Nociceptor Ion Channel TRPA1 Is Potentiated and Inactivated by Permeating Calcium Ions. J Biol Chem 283, 32691–32703 (2008). PubMed PMC

Baez-Nieto D., Castillo J. P., Dragicevic C., Alvarez O. & Latorre R. Thermo-TRP channels: biophysics of polymodal receptors. Adv Exp Med Biol 704, 469–490 (2011). PubMed

Wan X. et al.. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation. Pflugers Arch 466, 1273–1287 (2014). PubMed PMC

Palovcak E., Delemotte L., Klein M. L. & Carnevale V. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. The Journal of general physiology 146, 37–50 (2015). PubMed PMC

Paulsen C. E., Armache J. P., Gao Y., Cheng Y. & Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511–517 (2015). PubMed PMC

Cvetkov T. L., Huynh K. W., Cohen M. R. & Moiseenkova-Bell V. Y. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286, 38168–38176 (2011). PubMed PMC

Wang L., Cvetkov T. L., Chance M. R. & Moiseenkova-Bell V. Y. Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287, 6169–6176 (2012). PubMed PMC

Brewster M. S. & Gaudet R. How the TRPA1 receptor transmits painful stimuli: Inner workings revealed by electron cryomicroscopy. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 37, 1184–1192 (2015). PubMed PMC

Hinman A., Chuang H. H., Bautista D. M. & Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103, 19564–19568 (2006). PubMed PMC

Macpherson L. J. et al.. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007). PubMed

Caterina M. J. Chemical biology: sticky spices. Nature 445, 491–492 (2007). PubMed

Nilius B., Prenen J. & Owsianik G. Irritating channels: the case of TRPA1. Journal of Physiology 589, 1543–1549 (2011). PubMed PMC

Cordero-Morales J. F., Gracheva E. O. & Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences of the United States of America 108, E1184–1191 (2011). PubMed PMC

Binder A. et al.. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One 6, e17387 (2011). PubMed PMC

May D. et al.. Differential expression and functionality of TRPA1 protein genetic variants in conditions of thermal stimulation. J Biol Chem 287, 27087–27094 (2012). PubMed PMC

Jabba S. et al.. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82, 1017–1031 (2014). PubMed PMC

Moparthi L. et al.. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci USA 111, 16901–16906 (2014). PubMed PMC

Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4, 372–379 (2008). PubMed PMC

Sotomayor M., Corey D. P. & Schulten K. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13, 669–682 (2005). PubMed

Yuan C. et al.. The study of pH-dependent stability shows that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin. Biochemistry 52, 4848–4857 (2013). PubMed PMC

Guo Y. et al.. Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. J Mol Biol 399, 168–181 (2010). PubMed PMC

Lee W., Strumpfer J., Bennett V., Schulten K. & Marszalek P. E. Mutation of conserved histidines alters tertiary structure and nanomechanics of consensus ankyrin repeats. J Biol Chem 287, 19115–19121 (2012). PubMed PMC

Schmidt M., Dubin A. E., Petrus M. J., Earley T. J. & Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 (2009). PubMed PMC

Li J., Mahajan A. & Tsai M. D. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45, 15168–15178 (2006). PubMed

Dai Y. et al.. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117, 1979–1987 (2007). PubMed PMC

Staruschenko A., Jeske N. A. & Akopian A. N. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285, 15167–15177 (2010). PubMed PMC

Stokes A. et al.. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18, 1584–1594 (2006). PubMed

Morgan K., Sadofsky L. R. & Morice A. H. Genetic variants affecting human TRPA1 or TRPM8 structure can be classified in vitro as ‘well expressed’, ‘poorly expressed’ or ‘salvageable’. Biosci Rep 35, 10.1042/BSR20140061 (2015). PubMed DOI PMC

Zhang X., Li L. & McNaughton P. A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450–461 (2008). PubMed

Pareek T. K. et al.. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci USA 104, 660–665 (2007). PubMed PMC

Liu J., Du J., Yang Y. & Wang Y. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 273, 253–262 (2015). PubMed

Gallazzini M., Yu M. J., Gunaratne R., Burg M. B. & Ferraris J. D. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 24, 4325–4335 (2010). PubMed PMC

Zheng Y. L., Li B. S., Amin N. D., Albers W. & Pant H. C. A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Eur J Biochem 269, 4427–4434 (2002). PubMed

Dhavan R. & Tsai L. H. A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759 (2001). PubMed

Zhong L. et al.. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep 1, 43–55 (2012). PubMed PMC

Takahashi N. et al.. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7, 701–711 (2011). PubMed

Horrigan F. T. & Aldrich R. W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. The Journal of General Physiology 120, 267–305 (2002). PubMed PMC

Brauchi S., Orio P. & Latorre R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101, 15494–15499 (2004). PubMed PMC

Voolstra O. & Huber A. Post-Translational Modifications of TRP Channels. Cells 3, 258–287 (2014). PubMed PMC

Benedikt J., Teisinger J., Vyklicky L. & Vlachova V. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4, 5-bisphosphate. J Neurochem 100, 211–224 (2007). PubMed

Dittert I. et al.. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J Neurosci Methods 151, 178–185 (2006). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...