During the Late Pleistocene, narrow-headed voles (Lasiopodomys gregalis) inhabited Eurasia's vast territories, frequently becoming the dominant small mammal species among steppe-tundra communities. We investigated the relationship between this species' European and Asiatic populations by sequencing the mtDNA genomes of two extant specimens from Russia and 10 individuals from five Central European sites, dated to the post-LGM period. Phylogenetic analyses based on a large portion of mtDNA genomes highly supported the positioning of L. gregalis within Arvicolinae. The phylogeny based on mtDNA cytochrome b sequences revealed a deep divergence of European narrow-headed voles from Asiatic ones and their sister position against the extant L. gregalis and L. raddei. The divergence of the European lineage was estimated to a minimum 230 thousand years ago. This suggest, contrary to the current biogeographic hypotheses, that during the interglacial periods narrow-headed vole did not retreat from Europe but survived the unfavourable conditions within the refugial areas. Based on this result, we propose to establish a cryptic species status for the Late Pleistocene European narrow-headed vole and to name this taxon Lasiopodomys anglicus.
- MeSH
- Arvicolinae klasifikace genetika MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- fylogeografie metody MeSH
- genetická variace * MeSH
- lesy MeSH
- mitochondriální DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- tundra MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
Current species distributions at high latitudes are the product of expansion from glacial refugia into previously uninhabitable areas at the end of the last glaciation. The traditional view of postglacial colonization is that southern populations expanded their ranges into unoccupied northern territories. Recent findings on mitochondrial DNA (mtDNA) of British small mammals have challenged this simple colonization scenario by demonstrating a more complex genetic turnover in Britain during the Pleistocene-Holocene transition where one mtDNA clade of each species was replaced by another mtDNA clade of the same species. Here, we provide evidence from one of those small mammals, the bank vole (Clethrionomys glareolus), that the replacement was genome-wide. Using more than 10 000 autosomal SNPs we found that similar to mtDNA, bank vole genomes in Britain form two (north and south) clusters which admix. Therefore, the genome of the original postglacial colonists (the northern cluster) was probably replaced by another wave of migration from a different continental European population (the southern cluster), and we gained support for this by modelling with approximate Bayesian computation. This finding emphasizes the importance of analysis of genome-wide diversity within species under changing climate in creating opportunities for sophisticated testing of population history scenarios.
- MeSH
- Arvicolinae genetika fyziologie MeSH
- fylogeneze MeSH
- genom * MeSH
- jednonukleotidový polymorfismus * MeSH
- migrace zvířat * MeSH
- rozšíření zvířat * MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Anglie MeSH
- Skotsko MeSH
- Wales MeSH
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.
- MeSH
- alely MeSH
- Arvicolinae genetika MeSH
- DNA primery MeSH
- exony MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genotyp MeSH
- geny MHC třídy I * MeSH
- hlavní histokompatibilní komplex genetika MeSH
- multigenová rodina MeSH
- myši MeSH
- transkriptom * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The sibling species Microtus thomasi and M. atticus represent probably the highest karyotypic diversity within the genus Microtus and are an interesting model for chromosomal evolution studies. In addition to variation in autosomes, they show a high intraspecific variation in the size and morphology of both sex chromosomes. We analyzed individuals with different sex chromosome constitutions using 3 painting probes, 2 from Y chromosome variants and 1 from the small arm of the submetacentric X chromosome. Our comparative painting approach uncovered 12 variants of Y and 14 variants of X chromosomes, which demonstrates that the polymorphism of sex chromosomes is substantially larger than previously reported. We suggest that 2 main processes are responsible for this sex chromosome polymorphism: change of morphology from acrocentric to submetacentric or metacentric chromosomes and increase in size due to accumulation of repetitive DNA sequences, generating heterochromatic blocks. Strong genetic drift in small and fragmented populations of these 2 species could be related to the origin and maintenance of the large polymorphism of sex chromosomes. We proposed that a similar polymorphism variation combined with random drift fixing the biggest sex chromosomes could have occurred in the origin of some of the actual Microtus species with giant sex chromosomes.
- MeSH
- Arvicolinae genetika MeSH
- biologická evoluce MeSH
- chromozom X genetika MeSH
- chromozom Y genetika MeSH
- druhová specificita MeSH
- genová přestavba genetika MeSH
- heterochromatin genetika MeSH
- karyotypizace metody MeSH
- polymorfismus genetický genetika MeSH
- pruhování chromozomů metody MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential 'northern glacial refugium', i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe.
- MeSH
- Arvicolinae genetika MeSH
- Bayesova věta MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
We present the first complete sequence of the bank vole (Clethrionomys glareolus) mitochondrial genome (GenBank accession no. KF918859). The bank vole mitogenome is 16,353 base pairs long and shows the gene content, genome architecture and gene strand asymmetry typical for mammals. The sequence provides an important new genomic resource for the bank vole, which is a popular study species in ecological and evolutionary research.
BACKGROUND: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. RESULTS: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3' end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. CONCLUSIONS: This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.
We have revisited the mtDNA phylogeny of the bank vole Clethrionomys glareolus based on Sanger and next-generation Illumina sequencing of 32 complete mitochondrial genomes. The bank vole is a key study species for understanding the response of European fauna to the climate change following the Last Glacial Maximum (LGM) and one of the most convincing examples of a woodland mammal surviving in cryptic northern glacial refugia in Europe. The genomes sequenced included multiple representatives of each of the eight bank vole clades previously described based on cytochrome b (cob) sequences. All clades with the exception of the Basque - likely a misidentified pseudogene clade - were highly supported in all phylogenetic analyses and the relationships between the clades were resolved with high confidence. Our data extend the distribution of the Carpathian clade, the marker of a northern glacial refugium in the Carpathian Mountains, to include Britain and Fennoscandia (but not adjacent areas of continental Europe). The Carpathian sub-clade that colonized Britain and Fennoscandia had a somewhat different history from the sub-clade currently found in or close to the Carpathians and may have derived from a more north-westerly refugial area. The two bank vole populations that colonized Britain at the end of the last glaciation are for the first time linked with particular continental clades, the first colonists with the Carpathian clade and the second colonists with the western clade originating in a more southerly refugium in the vicinity of the Alps. We however found no evidence that a functional divergence of proteins encoded in the mitochondrial genome promoted the partial genetic replacement of the first colonists by the second colonists detected previously in southern Britain. We did identify one codon site that changed more often and more radically in the tree than expected and where the observed amino acid change may affect the reductase activity of the cytochrome bc1 complex, but the change was not specific to a particular clade. We also found an excess of radical changes to the primary protein structure for geographically restricted clades from southern Italy and Norway, respectively, possibly related to stronger selective pressure at the latitudinal extremes of the bank vole distribution. However, overall, we find little evidence of pervasive effects of deviation from neutrality on bank vole mtDNA phylogeography.
- MeSH
- Arvicolinae klasifikace genetika MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- cytochromy b genetika MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- klimatické změny MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- pravděpodobnostní funkce MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth.
- MeSH
- Arvicolinae anatomie a histologie genetika MeSH
- lidé MeSH
- moláry růst a vývoj radiografie MeSH
- rentgenová mikrotomografie MeSH
- rodokmen MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
A new repeated DNA from Microtus thomasi, Mth-Alu2.2, was cloned and characterized and is presented here for the first time. Digestion of genomic DNA from M. thomasi with AluI restriction enzyme revealed a 2.2-kb repetitive DNA sequence with a high AT content (69%). This sequence consists of a tandemly repeated nonanucleotide of the consensus sequence CACAATGTA, which constitutes approximately 93-95% of the total unit length. The location of the Mth-Alu2.2 sequence in the karyotype was determined by FISH, demonstrating strong hybridization signals in the pericentromeric regions of all chromosomes and in the heterochromatin blocks of several X chromosome variants. In addition, the distribution of the 4 pericentromeric repeat sequences Msat-160, Mth-Alu900, Mth-Alu2.2, and interstitial telomeric repeats was analyzed by in situ hybridization in M. thomasi, in order to shed light on the complex composition of the chromosomal pericentromeric regions in this species. The order and organization of these sequences in the pericentromeric regions are conserved, with slight variations in both the degree of overlapping and the amount of each repeated DNA in the chromosomes. Specifically, Mth-Alu2.2 is localized in the terminal regions of the chromosomes, with Msat-160 occupying the immediately inner region, partially intermixed with Mth-Alu2.2. The sequence Mth-Alu900 is found in internal positions below Msat-160, and the interstitial telomeric repeats are located close to the long-arm euchromatin of the chromosomes.
- MeSH
- Arvicolinae genetika metabolismus MeSH
- buněčný rodokmen MeSH
- centromera ultrastruktura MeSH
- centrozom ultrastruktura MeSH
- DNA chemie MeSH
- fenotyp MeSH
- heterochromatin chemie MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace MeSH
- křížení genetické MeSH
- repetitivní sekvence nukleových kyselin MeSH
- telomery ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH