Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq

S. Marková, K. Filipi, JB. Searle, P. Kotlík,

. 2015 ; 16 (-) : 870. [pub] 20151026

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028041

BACKGROUND: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. RESULTS: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3' end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. CONCLUSIONS: This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028041
003      
CZ-PrNML
005      
20161021101150.0
007      
ta
008      
161005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-015-2103-2 $2 doi
024    7_
$a 10.1186/s12864-015-2103-2 $2 doi
035    __
$a (PubMed)26503603
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Marková, Silvia $u Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic.
245    10
$a Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq / $c S. Marková, K. Filipi, JB. Searle, P. Kotlík,
520    9_
$a BACKGROUND: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. RESULTS: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3' end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. CONCLUSIONS: This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.
650    _2
$a zvířata $7 D000818
650    _2
$a Arvicolinae $x genetika $7 D003411
650    _2
$a mapování chromozomů $7 D002874
650    _2
$a mitochondriální DNA $x genetika $7 D004272
650    _2
$a genom mitochondriální $x genetika $7 D054629
650    _2
$a sekvenční analýza RNA $7 D017423
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Filipi, Karolína $u Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic. Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12844, Prague 2, Czech Republic.
700    1_
$a Searle, Jeremy B $u Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
700    1_
$a Kotlík, Petr $u Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic. kotlik@iapg.cas.cz.
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 16, č. - (2015), s. 870
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26503603 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161021101559 $b ABA008
999    __
$a ok $b bmc $g 1166355 $s 952671
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 870 $e 20151026 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...