Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1308120
Grantová Agentura, Univerzita Karlova
1308120
Grantová Agentura, Univerzita Karlova
1308120
Grantová Agentura, Univerzita Karlova
19-22538S
Grantová Agentura České Republiky
19-22538S
Grantová Agentura České Republiky
19-22538S
Grantová Agentura České Republiky
19-22538S
Grantová Agentura České Republiky
19-22538S
Grantová Agentura České Republiky
PubMed
38902251
PubMed Central
PMC11190206
DOI
10.1038/s41598-024-62244-3
PII: 10.1038/s41598-024-62244-3
Knihovny.cz E-zdroje
- MeSH
- kloaka * metabolismus MeSH
- Passeriformes fyziologie metabolismus MeSH
- proteom metabolismus analýza MeSH
- proteomika * metody MeSH
- roční období MeSH
- rozmnožování * fyziologie MeSH
- sexuální chování zvířat fyziologie MeSH
- spermie metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom MeSH
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Vertebrate Biology The Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Parker GA. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 1970;45:525–567. doi: 10.1111/j.1469-185X.1970.tb01176.x. DOI
Thornhill R. Cryptic female choice and its implications in the Scorpionfly Harpobittacus nigriceps. Am. Nat. 1983;122:765–788. doi: 10.1086/284170. DOI
Firman RC, Gasparini C, Manier MK, Pizzari T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 2017;32:368–382. doi: 10.1016/j.tree.2017.02.010. PubMed DOI PMC
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20200077. doi: 10.1098/rstb.2020.0077. PubMed DOI PMC
Dean R, Nakagawa S, Pizzari T. The risk and intensity of sperm ejection in female birds. Am. Nat. 2011;178:343–354. doi: 10.1086/661244. PubMed DOI
Lüpold S, et al. Female mediation of competitive fertilization success in Drosophila melanogaster. Proc. Natl. Acad. Sci. 2013;110:10693–10698. doi: 10.1073/pnas.1300954110. PubMed DOI PMC
Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. Mol. Hum. Reprod. 2014;20:1180–1189. doi: 10.1093/molehr/gau067. PubMed DOI
Birkhead TR, Møller AP. Sexual selection and the temporal separation of reproductive events: Sperm storage data from reptiles, birds and mammals. Biol. J. Lin. Soc. 1993;50:295–311. doi: 10.1111/j.1095-8312.1993.tb00933.x. DOI
Holt WV, Lloyd RE. Sperm storage in the vertebrate female reproductive tract: How does it work so well? Theriogenology. 2010;73:713–722. doi: 10.1016/j.theriogenology.2009.07.002. PubMed DOI
Bakst M, Wishart G, Brillard J-P. Oviducal sperm selection, transport, and storage in poultry. Poult. Sci. Rev. 1994;5:117–143.
Gasparini C, Pilastro A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc. R. Soc. B Biol. Sci. 2011;278:2495–2501. doi: 10.1098/rspb.2010.2369. PubMed DOI PMC
Pitnick, S., Wolfner, M. F. & Suarez, S. S. Ejaculate-female and sperm-female interactions. In Sperm Biology: An Evolutionary Perspective 247–304 (Academic Press, London, 2009). 10.1016/B978-0-12-372568-4.00007-0.
Urbach D, Folstad I, Rudolfsen G. Effects of ovarian fluid on sperm velocity in Arctic charr (Salvelinus alpinus) Behav. Ecol. Sociobiol. 2005;57:438–444. doi: 10.1007/s00265-004-0876-4. DOI
Villanueva-Diaz C, Vadillo-Ortega F, Kably-Ambe A, Diaz-Pérez MA, Krivitzky SK. Evidence that human follicular fluid contains a chemoattractant for spermatozoa. Fertil. Steril. 1990;54:1180–1182. doi: 10.1016/S0015-0282(16)54027-8. PubMed DOI
Oliveira RG, Tomasi L, Rovasio RA, Giojalas LC. Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. Reproduction. 1999;115:23–27. doi: 10.1530/jrf.0.1150023. PubMed DOI
Cramer ERA, et al. Testing a post-copulatory pre-zygotic reproductive barrier in a passerine species pair. Behav. Ecol. Sociobiol. 2014;68:1133–1144. doi: 10.1007/s00265-014-1724-9. DOI
Cramer ERA, et al. Sperm performance in conspecific and heterospecific female fluid. Ecol. Evol. 2016;6:1363–1377. doi: 10.1002/ece3.1977. PubMed DOI PMC
Cramer ERA, Ålund M, McFarlane SE, Johnsen A, Qvarnström A. Females discriminate against heterospecific sperm in a natural hybrid zone. Evolution. 2016;70:1844–1855. doi: 10.1111/evo.12986. PubMed DOI
Poignet M, et al. Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci. Rep. 2022;12:22275. doi: 10.1038/s41598-022-26101-5. PubMed DOI PMC
Ahammad MU, et al. Effects of fluid secreted from the uterus on duration of fertile egg production in hens, and survivability and penetrability of fowl sperm in vitro. J. Poult. Sci. 2013;50:74–82. doi: 10.2141/jpsa.0120045. DOI
Yeates SE, et al. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution. 2013;67:3523–3536. doi: 10.1111/evo.12208. PubMed DOI PMC
Gasparini C, Evans JP. Ovarian fluid mediates the temporal decline in sperm viability in a fish with sperm storage. PLoS ONE. 2013;8:e64431. doi: 10.1371/journal.pone.0064431. PubMed DOI PMC
Turner E, Montgomerie R. Ovarian fluid enhances sperm movement in Arctic charr. J. Fish Biol. 2002;60:1570–1579. doi: 10.1111/j.1095-8649.2002.tb02449.x. DOI
Gomendio M, Roldan ERS. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2008;52:439–447. doi: 10.1387/ijdb.082595mg. PubMed DOI
Knief U, et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. 2017;1:1177–1184. doi: 10.1038/s41559-017-0236-1. PubMed DOI
Lahnsteiner F, Weismann T, Patzner R. Composition of the ovarian fluid in 4 salmonid species: Oncorhynchus mykiss, Salmo trutta f lacustris, Saivelinus alpinus and Hucho hucho. Reprod. Nutr. Dev. 1995;35:465–474. doi: 10.1051/rnd:19950501. PubMed DOI
Rosengrave P, et al. Chemical composition of seminal and ovarian fluids of chinook salmon (Oncorhynchus tshawytscha) and their effects on sperm motility traits. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009;152:123–129. doi: 10.1016/j.cbpa.2008.09.009. PubMed DOI
Ramm SA. Seminal fluid and accessory male investment in sperm competition. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20200068. doi: 10.1098/rstb.2020.0068. PubMed DOI PMC
Zadmajid V, Myers JN, Sørensen SR, Ernest Butts IA. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology. 2019;132:144–152. doi: 10.1016/j.theriogenology.2019.03.021. PubMed DOI
Kholodnyy V, Gadêlha H, Cosson J, Boryshpolets S. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev. Aquac. 2019;12:1165–1192. doi: 10.1111/raq.12378. DOI
Swanson W, Vacquier V. Reproductive protein evolution. Annu. Rev. Ecol. Evol. Syst. 2002;33:161–179. doi: 10.1146/annurev.ecolsys.33.010802.150439. DOI
Lahnsteiner F. Morphological, physiological and biochemical parameters characterizing the over-ripening of rainbow trout eggs. Fish Physiol. Biochem. 2000;23:107–118. doi: 10.1023/A:1007839023540. DOI
Johnson SL, et al. Ovarian fluid proteome variation associates with sperm swimming speed in an externally fertilizing fish. J. Evol. Biol. 2020;33:1783–1794. doi: 10.1111/jeb.13717. PubMed DOI PMC
Zhang H, et al. Use of proteomic analysis of endometriosis to identify different protein expression in patients with endometriosis versus normal controls. Fertil. Steril. 2006;86:274–282. doi: 10.1016/j.fertnstert.2006.01.028. PubMed DOI
Ma X, et al. Proteomic analysis of human ovaries from normal and polycystic ovarian syndrome. Mol. Hum. Reprod. 2007;13:527–535. doi: 10.1093/molehr/gam036. PubMed DOI
Apichela SA, et al. Biochemical composition and protein profile of alpaca (Vicugna pacos) oviductal fluid. Anim. Reprod. Sci. 2015;154:79–85. doi: 10.1016/j.anireprosci.2014.12.013. PubMed DOI
Hatzirodos N, et al. Transcript abundance of stromal and thecal cell related genes during bovine ovarian development. PLoS ONE. 2019;14:e0213575. doi: 10.1371/journal.pone.0213575. PubMed DOI PMC
Nakamura O, et al. Transport of maternal transthyretin to the fetus in the viviparous teleost Neoditrema ransonnetii (Perciformes, Embiotocidae) J. Comp. Physiol. B. 2020;190:231–241. doi: 10.1007/s00360-020-01261-w. PubMed DOI
Meng Y, et al. Effects of GnRH antagonist on endometrial protein profiles in the window of implantation. Proteomics. 2014;14:2350–2359. doi: 10.1002/pmic.201400145. PubMed DOI
Muthukumar S, et al. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: Heat shock protein (Hsp)-70 appears to be an Estrus indicator1. Biol. Reprod. 2014;90(97):1–8. PubMed
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Scientific Reports. 2017;7:11674. doi: 10.1038/s41598-017-12021-2. PubMed DOI PMC
Soleilhavoup C, et al. Proteomes of the female genital tract during the oestrous cycle. Mol. Cell. Proteomics. 2016;15:93–108. doi: 10.1074/mcp.M115.052332. PubMed DOI PMC
Griffith SC, Owens IPF, Thuman KA. Extra pair paternity in birds: A review of interspecific variation and adaptive function. Mol. Ecol. 2002;11:2195–2212. doi: 10.1046/j.1365-294X.2002.01613.x. PubMed DOI
Brouwer L, Griffith SC. Extra-pair paternity in birds. Mol. Ecol. 2019;28:4864–4882. doi: 10.1111/mec.15259. PubMed DOI PMC
Birkhead TR, Brillard J-P. Reproductive isolation in birds: postcopulatory prezygotic barriers. Trends Ecol. Evol. 2007;22:266–272. doi: 10.1016/j.tree.2007.02.004. PubMed DOI
Froman D. Deduction of a model for sperm storage in the oviduct of the domestic fowl (Gallus domesticus) Biol. Reprod. 2003;69:248–253. doi: 10.1095/biolreprod.102.013482. PubMed DOI
Bakst MR, Akuffo V. Alkaline phosphatase reactivity in the vagina and uterovaginal junction sperm-storage tubules of turkeys in egg production: Implications for sperm storage. Br. Poult. Sci. 2007;48:515–518. doi: 10.1080/00071660701381761. PubMed DOI
Gautron J, et al. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connect. Tissue Res. 2001;42:255–267. doi: 10.3109/03008200109016840. PubMed DOI
Riou C, et al. Avian uterine fluid proteome: Exosomes and biological processes potentially involved in sperm survival. Mol. Reprod. Dev. 2020;87:454–470. doi: 10.1002/mrd.23333. PubMed DOI
Riou C, et al. Proteomic analysis of uterine fluid of fertile and subfertile hens before and after insemination. Reproduction. 2019;158:335–356. doi: 10.1530/REP-19-0079. PubMed DOI
Møller AP, Brohede J, Cuervo JJ, de Lope F, Primmer C. Extrapair paternity in relation to sexual ornamentation, arrival date, and condition in a migratory bird. Behav. Ecol. 2003;14:707–712. doi: 10.1093/beheco/arg051. DOI
Michálková R, Tomášek O, Adámková M, Kreisinger J, Albrecht T. Extra-pair paternity patterns in European barn swallows Hirundo rustica are best explained by male and female age rather than male ornamentation. Behav. Ecol. Sociobiol. 2019;73:119. doi: 10.1007/s00265-019-2725-5. DOI
Møller AP, Mousseau TA, Rudolfsen G. Females affect sperm swimming performance: A field experiment with barn swallows Hirundo rustica. Behav. Ecol. 2008;19:1343–1350. doi: 10.1093/beheco/arn068. DOI
Møller AP, et al. Senescent sperm performance in old male birds. J. Evol. Biol. 2009;22:334–344. doi: 10.1111/j.1420-9101.2008.01650.x. PubMed DOI
Møller AP. Mixed reproductive strategy and mate guarding in a semi-colonial passerine, the swallow Hirundo rustica. Behav. Ecol. Sociobiol. 1985;17:401–408. doi: 10.1007/BF00293220. DOI
Kempenaers B. Does reproductive synchrony limit male opportunities or enhance female choice for extra-pair paternity? Behavior. 1997;134:441–562. doi: 10.1163/156853997X00520. DOI
Mota PG, Hoi-Leitner M. Intense extrapair behaviour in a semicolonial passerine does not result in extrapair fertilizations. Anim. Behav. 2003;66:1019–1026. doi: 10.1006/anbe.2002.2285. DOI
Redfern CPF, Clark JA. Ringers’ Manual. British Trust for Ornithology; 2001.
Redfern CPF. Brood patches. Ringers’ Bull. 2008;12:39–41.
Petrželková A, et al. Brood parasitism and quasi-parasitism in the European barn swallow Hirundo rustica rustica. Behav. Ecol. Sociobiol. 2015;69:1405–1414. doi: 10.1007/s00265-015-1953-6. DOI
Kuntová B, Stopková R, Stopka P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018;9:297892. doi: 10.3389/fgene.2018.00026. PubMed DOI PMC
Otčenášková T, et al. Comparative sperm proteomics in selected passerine birds reflects sperm morphology and mitochondrial metabolism. J. Vertebr. Biol. 2023;72:23045.1–23114. doi: 10.25225/jvb.23045. DOI
Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Crawley MJ. The R Book. Wiley; 2007.
Chawade A, Alexandersson E, Levander F. Normalyzer: A tool for rapid evaluation of normalization methods for omics data sets. J. Proteome Res. 2014;13:3114–3120. doi: 10.1021/pr401264n. PubMed DOI PMC
Rohart F, Gautier B, Singh A, Cao K-AL. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Pavelka N, et al. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinform. 2004;5:203. doi: 10.1186/1471-2105-5-203. PubMed DOI PMC
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.
Wu T, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Matějková T, Dodoková A, Kreisinger J, Stopka P, Stopková R. Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiol. Spectr. 2024 doi: 10.1128/spectrum.02037-23. PubMed DOI PMC
Grande G, et al. Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. Mol. Biosyst. 2015;11:1717–1725. doi: 10.1039/C5MB00071H. PubMed DOI
Manstein DJ, Meiring JCM, Hardeman EC, Gunning PW. Actin–tropomyosin distribution in non-muscle cells. J. Muscle Res. Cell Motil. 2020;41:11–22. doi: 10.1007/s10974-019-09514-0. PubMed DOI PMC
Xiao S, et al. Differential gene expression profiling of mouse uterine luminal epithelium during periimplantation. Reprod. Sci. 2014;21:351–362. doi: 10.1177/1933719113497287. PubMed DOI PMC
Karantza V. Keratins in health and cancer: More than mere epithelial cell markers. Oncogene. 2011;30:127–138. doi: 10.1038/onc.2010.456. PubMed DOI PMC
Walczak J, Bocian S, Trziszka T, Buszewski B. Hyphenated analytical methods in determination of biologically active compounds in hen’s eggs. Crit. Rev. Anal. Chem. 2016;46:201–212. doi: 10.1080/10408347.2015.1023428. PubMed DOI
Bílková B, et al. Domestic fowl breed variation in egg white protein expression: Application of proteomics and transcriptomics. J. Agric. Food Chem. 2018;66:11854–11863. doi: 10.1021/acs.jafc.8b03099. PubMed DOI
Da Silva M, et al. The family secrets of avian egg-specific ovalbumin and its related proteins Y and X. Biol. Reprod. 2015;93:71–81. doi: 10.1095/biolreprod.115.130856. PubMed DOI
Sah N, Mishra B. Regulation of egg formation in the oviduct of laying hen. World’s Poult. Sci. J. 2018;74:509–522. doi: 10.1017/S0043933918000442. DOI
Bourin M, et al. Transcriptomic profiling of proteases and antiproteases in the liver of sexually mature hens in relation to vitellogenesis. BMC Genom. 2012;13:457. doi: 10.1186/1471-2164-13-457. PubMed DOI PMC
Hayward A, Takahashi T, Bendena WG, Tobe SS, Hui JHL. Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Lett. 2010;584:1273–1278. doi: 10.1016/j.febslet.2010.02.056. PubMed DOI
Sun C, Zhang S. Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish. Nutrients. 2015;7:8818–8829. doi: 10.3390/nu7105432. PubMed DOI PMC
Lu C-L, Baker RC. Characteristics of egg yolk phosvitin as an antioxidant for inhibiting metal-catalyzed phospholipid oxidations. Poult. Sci. 1986;65:2065–2070. doi: 10.3382/ps.0652065. PubMed DOI
Saunders DK, Fowler O, Smalley KN. The effects of estradiol treatment on the blood viscosity of the bullfrog Rana catesbeiana. Trans. Kansas Acad. Sci. 2000;1903(103):38–45. doi: 10.2307/3627934. DOI
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc. R. Soc. B Biol. Sci. 2020;287:20201031. doi: 10.1098/rspb.2020.1031. PubMed DOI PMC
Duggavathi R, et al. The fatty acid binding protein 6 gene (Fabp6) is expressed in murine granulosa cells and is involved in ovulatory response to superstimulation. J. Reprod. Dev. 2015;61:237–240. doi: 10.1262/jrd.2014-139. PubMed DOI PMC
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J. Inherit. Metab. Dis. 2016;39:545–557. doi: 10.1007/s10545-016-9950-0. PubMed DOI
Kuang W, et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021;35:109025. doi: 10.1016/j.celrep.2021.109025. PubMed DOI PMC
Krisfalusi M, Miki K, Magyar PL, O’Brien DA. Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol. Reprod. 2006;75:270–278. doi: 10.1095/biolreprod.105.049684. PubMed DOI
Tang J, et al. Dietary riboflavin supplementation improve the growth performance and antioxidant status of starter white Pekin ducks fed a corn–soybean meal diets. Livest. Sci. 2014;170:131–136. doi: 10.1016/j.livsci.2014.10.016. DOI
Saedisomeolia, A. & Ashoori, M. Riboflavin in human health: A review of current evidences. in Advances in Food and Nutrition Research vol. 83, 57–81 (Elsevier, 2018). PubMed
Lee RK-K, et al. Expression of cystatin C in the female reproductive tract and its effect on human sperm capacitation. Reprod. Biol. Endocrinol. 2018;16:1–10. doi: 10.1186/s12958-018-0327-0. PubMed DOI PMC
Li S-H, et al. Serine protease inhibitor SERPINE2 reversibly modulates murine sperm capacitation. Int. J. Mol. Sci. 2018;19:1520. doi: 10.3390/ijms19051520. PubMed DOI PMC
Surai PF, et al. Polyunsaturated fatty acids, lipid peroxidation and antioxidant protection in avian semen. Asian-Australas. J. Anim. Sci. 2001;14:1024–1050. doi: 10.5713/ajas.2001.1024. DOI
Kiyozumi D, Ikawa M. Proteolysis in reproduction: Lessons from gene-modified organism studies. Front. Endocrinol. 2022;13:87637. doi: 10.3389/fendo.2022.876370. PubMed DOI PMC
Mine Y, Kovacs-Nolan J. New insights in biologically active proteins and peptides derived from hen egg. World’s Poult. Sci. J. 2006;62:87–96. doi: 10.1079/WPS200586. DOI
Poiani A, Wilks C. Sexually transmitted diseases: A possible cost of promiscuity in birds? The Auk. 2000;117:1061–1065. doi: 10.1093/auk/117.4.1061. DOI
Perez-Riverol Y, et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC