Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36566302
PubMed Central
PMC9789955
DOI
10.1038/s41598-022-26101-5
PII: 10.1038/s41598-022-26101-5
Knihovny.cz E-zdroje
- MeSH
- inseminace MeSH
- rozmnožování MeSH
- sperma * MeSH
- spermie MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Palacký University Olomouc Czech Republic
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Coyne, J. A. & Orr, H. A. Speciation, vol. 37 276–281 (Sinauer Associates, 2004).
Price, T. Speciation in Birds (Roberts and Co., 2008).
Birkhead TR, Brillard J-P. Reproductive isolation in birds: Postcopulatory prezygotic barriers. Trends Ecol. Evol. 2007;22:266–272. doi: 10.1016/j.tree.2007.02.004. PubMed DOI
McDonough CE, Whittington E, Pitnick S, Dorus S. Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J. Proteom. 2016;135:26–37. doi: 10.1016/j.jprot.2015.10.015. PubMed DOI
Garlovsky MD, Snook RR. Persistent postmating, prezygotic reproductive isolation between populations. Ecol. Evol. 2018;8:9062–9073. doi: 10.1002/ece3.4441. PubMed DOI PMC
Cramer ERA, Ålund M, McFarlane SE, Johnsen A, Qvarnström A. Females discriminate against heterospecific sperm in a natural hybrid zone: Cryptic female choice in a hybrid zone. Evolution. 2016;70:1844–1855. doi: 10.1111/evo.12986. PubMed DOI
Turissini DA, McGirr JA, Patel SS, David JR, Matute DR. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 2018;35:312–334. doi: 10.1093/molbev/msx271. PubMed DOI PMC
Garlovsky MD, Evans C, Rosenow MA, Karr TL, Snook RR. Seminal fluid protein divergence among populations exhibiting postmating prezygotic reproductive isolation. Mol. Ecol. 2020;29:4428–4441. doi: 10.1111/mec.15636. PubMed DOI
Birkhead TR, Pizzari T. Postcopulatory sexual selection. Nat Rev Genet. 2002;3:262–273. doi: 10.1038/nrg774. PubMed DOI
Simmons LW, Fitzpatrick JL. Sperm wars and the evolution of male fertility. Reproduction. 2012;144:519–534. doi: 10.1530/REP-12-0285. PubMed DOI
Firman RC, Gasparini C, Manier MK, Pizzari T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 2017;32:368–382. doi: 10.1016/j.tree.2017.02.010. PubMed DOI PMC
Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. How sperm competition shapes the evolution of testes and sperm: A meta-analysis. Phil. Trans. R. Soc. B. 2020;375:20200064. doi: 10.1098/rstb.2020.0064. PubMed DOI PMC
Pitnick S, Hosken DJ, Birkhead TR. Sperm morphological diversity. Sperm Biol. 2009;2009:69–149. doi: 10.1016/B978-0-12-372568-4.00003-3. DOI
Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: A comparative study of songbirds using electron microscopy. Evolution. 2018;72:1918–1932. doi: 10.1111/evo.13555. PubMed DOI
Rowe M, et al. Molecular diversification of the seminal fluid proteome in a recently diverged passerine species pair. Mol. Biol. Evol. 2020;37:488–506. doi: 10.1093/molbev/msz235. PubMed DOI PMC
Hill T, Rosales-Stephens H-L, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 Genes Genomes Genetics. 2021;11:jkab050. PubMed PMC
Tyler F, et al. Multiple post-mating barriers to hybridization in field crickets. Mol. Ecol. 2013;22:1640–1649. doi: 10.1111/mec.12187. PubMed DOI
Bakst MR, Wishart G, Brillard J-P. Oviducal sperm selection, transport, and storage in poultry. Poult. Sci. Rev. 1994;5:117–143.
Stewart SG, et al. Species specificity in avian sperm: Perivitelline interaction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2004;137:657–663. doi: 10.1016/j.cbpb.2004.01.027. PubMed DOI
Birkhead TR, Martinez JG, Burke T, Froman DP. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B. 1999;266:1759–1764. doi: 10.1098/rspb.1999.0843. PubMed DOI PMC
Malo AF, et al. Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 2005;72:822–829. doi: 10.1095/biolreprod.104.036368. PubMed DOI
Gasparini C, Simmons LW, Beveridge M, Evans JP. Sperm swimming velocity predicts competitive fertilization success in the green swordtail Xiphophorus helleri. PLoS ONE. 2010;5:e12146. doi: 10.1371/journal.pone.0012146. PubMed DOI PMC
Fitzpatrick JL, et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. PNAS. 2009;106:1128–1132. doi: 10.1073/pnas.0809990106. PubMed DOI PMC
Lüpold S, Calhim S, Immler S, Birkhead TR. Sperm morphology and sperm velocity in passerine birds. Proc. R. Soc. B. 2009;276:1175–1181. doi: 10.1098/rspb.2008.1645. PubMed DOI PMC
Tourmente M, Gomendio M, Roldan ER. Sperm competition and the evolution of sperm design in mammals. BMC Evol. Biol. 2011;11:12. doi: 10.1186/1471-2148-11-12. PubMed DOI PMC
Bennison C, Hemmings N, Slate J, Birkhead T. Long sperm fertilize more eggs in a bird. Proc. R. Soc. B. 2015;282:20141897. doi: 10.1098/rspb.2014.1897. PubMed DOI PMC
Gomendio M, Roldan ERS. Sperm competition influences sperm size in mammals. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1991;243:181–185. doi: 10.1098/rspb.1991.0029. PubMed DOI
Mossman J, Slate J, Humphries S, Birkhead T. Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution. 2009;63:2730–2737. doi: 10.1111/j.1558-5646.2009.00753.x. PubMed DOI
Fitzpatrick JL, Garcia-Gonzalez F, Evans JP. Linking sperm length and velocity: The importance of intramale variation. Biol. Lett. 2010;6:797–799. doi: 10.1098/rsbl.2010.0231. PubMed DOI PMC
Anderson MJ, Nyholt J, Dixson AF. Sperm competition and the evolution of sperm midpiece volume in mammals. J. Zool. 2005;267:135–142. doi: 10.1017/S0952836905007284. DOI
Mendonca T, Birkhead TR, Cadby AJ, Forstmeier W, Hemmings N. A trade-off between thickness and length in the zebra finch sperm mid-piece. Proc. R. Soc. B. 2018;285:20180865. doi: 10.1098/rspb.2018.0865. PubMed DOI PMC
Humphries S, Evans JP, Simmons LW. Sperm competition: Linking form to function. BMC Evol. Biol. 2008;8:319. doi: 10.1186/1471-2148-8-319. PubMed DOI PMC
Helfenstein F, Podevin M, Richner H. Sperm morphology, swimming velocity, and longevity in the house sparrow Passer domesticus. Behav. Ecol. Sociobiol. 2010;64:557–565. doi: 10.1007/s00265-009-0871-x. DOI
Cramer ERA, et al. Morphology-function relationships and repeatability in the sperm of Passer sparrows: Sparrow sperm morphology and function. J. Morphol. 2015;276:370–377. doi: 10.1002/jmor.20346. PubMed DOI
Cramer ERA, et al. Longer sperm swim more slowly in the Canary Islands chiffchaff. Cells. 2021;10:1358. doi: 10.3390/cells10061358. PubMed DOI PMC
Rojas Mora A, Meniri M, Ciprietti S, Helfenstein F. Is sperm morphology functionally related to sperm swimming ability? A case study in a wild passerine bird with male hierarchies. BMC Evol. Biol. 2018;18:142. doi: 10.1186/s12862-018-1260-8. PubMed DOI PMC
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020;375:20200077. doi: 10.1098/rstb.2020.0077. PubMed DOI PMC
Chang AS. Conspecific sperm precedence in sister species of drosophila with overlapping ranges. Evolution. 2004;58:781–789. PubMed
Rugman-Jones PF, Eady PE. Conspecific sperm precedence in Callosobruchus subinnotatus (Coleoptera: Bruchidae): Mechanisms and consequences. Proc. R. Soc. B: Biol. Sci. 2007;274:983–988. doi: 10.1098/rspb.2006.0343. PubMed DOI PMC
Møller AP, Mousseau TA, Rudolfsen G. Females affect sperm swimming performance: A field experiment with barn swallows Hirundo rustica. Behav. Ecol. 2008;19:1343–1350. doi: 10.1093/beheco/arn068. DOI
Yeates SE, et al. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution. 2013;67:3523–3536. doi: 10.1111/evo.12208. PubMed DOI PMC
Cramer ERA, et al. Testing a post-copulatory pre-zygotic reproductive barrier in a passerine species pair. Behav. Ecol. Sociobiol. 2014;68:1133–1144. doi: 10.1007/s00265-014-1724-9. DOI
Cramer ERA, et al. Sperm performance in conspecific and heterospecific female fluid. Ecol. Evol. 2016;6:1363–1377. doi: 10.1002/ece3.1977. PubMed DOI PMC
Baer B, Eubel H, Taylor NL, O’Toole N, Millar AH. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biol. 2009;10:R67. doi: 10.1186/gb-2009-10-6-r67. PubMed DOI PMC
Riou C, et al. Avian uterine fluid proteome: Exosomes and biological processes potentially involved in sperm survival. Mol. Reprod. Dev. 2020;87:454–470. doi: 10.1002/mrd.23333. PubMed DOI
Briskie JV, Montgomerie R. Patterns of sperm storage in relation to sperm competition in passerine birds. The Condor. 1993;95:442–454. doi: 10.2307/1369366. DOI
Holt WV, Fazeli A. Sperm storage in the female reproductive tract. Annu. Rev. Anim. Biosci. 2016;4:291–310. doi: 10.1146/annurev-animal-021815-111350. PubMed DOI
Hemmings N, Birkhead T. Differential sperm storage by female zebra finches Taeniopygia guttata. Proc. R. Soc. B. 2017;284:20171032. doi: 10.1098/rspb.2017.1032. PubMed DOI PMC
Matsuzaki M, Sasanami T. Sperm storage in the female reproductive tract: A conserved reproductive strategy for better fertilization success. Adv. Exp. Med. Biol. 2017;1001:173–186. doi: 10.1007/978-981-10-3975-1_11. PubMed DOI
Presgraves DC, Baker RH, Wilkinson GS. Coevolution of sperm and female reproductive tract morphology in stalk–eyed flies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999;266:1041–1047. doi: 10.1098/rspb.1999.0741. DOI
Miller GT, Pitnick S. Sperm-female coevolution in Drosophila. Science. 2002;298:1230–1233. doi: 10.1126/science.1076968. PubMed DOI
Higginson DM, Miller KB, Segraves KA, Pitnick S. Female reproductive tract form drives the evolution of complex sperm morphology. PNAS. 2012;109:4538–4543. doi: 10.1073/pnas.1111474109. PubMed DOI PMC
Gert KR, Pauli A. Species-specific mechanisms during fertilization. Curr. Top. Dev. Biol. 2020;140:121–144. doi: 10.1016/bs.ctdb.2019.10.005. PubMed DOI
Nishio S, Matsuda T. Fertilization 1: Sperm–Egg Interaction. Avian Reproduction: From Behavior to Molecules. Springer; 2017. pp. 91–103. PubMed
Rodler D, Sasanami T, Sinowatz F. Assembly of the inner perivitelline layer, a homolog of the mammalian zona pellucida: An immunohistochemical and ultrastructural study. CTO. 2012;195:330–339. PubMed
Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: Reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC
Sorjonen J. Mixed singing and interspecific territoriality consequences of secondary contact of two ecologically and morphologically similar nightingale species in Europe. Ornis Scand. (Scand. J. Ornithol.) 1986;17:53–67. doi: 10.2307/3676753. DOI
Becker J. Sympatric occurrence and hybridization of the Thrush Nightingale (Luscinia luscinia) and the Nightingale (Luscinia megarhynchos) at Frankfurt (Oder) Brandenburg. Vogelwelt. 1995;116:109–118.
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: Evidence from two species of nightingales. BMC Evol. Biol. 2011;11:1. doi: 10.1186/1471-2148-11-138. PubMed DOI PMC
Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 2018;87:774–789. doi: 10.1111/1365-2656.12808. PubMed DOI
Sottas C, Reif J, Kuczyński L, Reifová R. Interspecific competition promotes habitat and morphological divergence in a secondary contact zone between two hybridizing songbirds. J. Evol. Biol. 2018;31:914–923. doi: 10.1111/jeb.13275. PubMed DOI
Sottas C. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol. Ecol. 2020;24:5639.
Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J. Ornithol. 2011;152:1063–1068. doi: 10.1007/s10336-011-0700-7. DOI
Mořkovský L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 2018;27:949–958. doi: 10.1111/mec.14479. PubMed DOI PMC
Janoušek V, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC
Albrecht T, et al. Sperm divergence in a passerine contact zone: Indication of reinforcement at the gametic level. Evolution. 2019;73:202–213. doi: 10.1111/evo.13677. PubMed DOI
BirdLife International. 2017 Luscinia megarhynchos (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017: e.T22709696A111760622. 10.2305/IUCN.UK.2017-1.RLTS.T22709696A111760622.en. Accessed 14 Sep 2020 (2017).
BirdLife International. 2016 Luscinia luscinia. The IUCN Red List of Threatened Species 2016: e.T22709691A87882842. 10.2305/IUCN.UK.2016-3.RLTS.T22709691A87882842.en. Accessed 14 Sep 2020 (2017).
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological roles of lipocalins in chemical communication, reproduction, and regulation of microbiota. Front. Physiol. 2021;12:740006. doi: 10.3389/fphys.2021.740006. PubMed DOI PMC
Howard DJ, Palumbi SR, Birge LM, Manier MK. Sperm and speciation. Sperm Biol. 2009;2009:367–403. doi: 10.1016/B978-0-12-372568-4.00009-4. DOI
Knowles LL, Markow TA. Sexually antagonistic coevolution of a postmating-prezygotic reproductive character in desert Drosophila. Proc. Natl. Acad. Sci. 2001;98:8692–8696. doi: 10.1073/pnas.151123998. PubMed DOI PMC
Hogner S, et al. Rapid sperm evolution in the bluethroat (Luscinia svecica) subspecies complex. Behav. Ecol. Sociobiol. 2013;67:1205–1217. doi: 10.1007/s00265-013-1548-z. DOI
Cramer ERA, Grønstøl G, Lifjeld JT. Flagellum tapering and midpiece volume in songbird spermatozoa. J. Morphol. 2022 doi: 10.1002/jmor.21524. PubMed DOI PMC
Gomendio M, Roldan ERS. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2004;52:439–447. doi: 10.1387/ijdb.082595mg. PubMed DOI
Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ. Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS ONE. 2010;5:e13456. doi: 10.1371/journal.pone.0013456. PubMed DOI PMC
Kleven O, et al. Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution. 2009;63:2466–2473. doi: 10.1111/j.1558-5646.2009.00725.x. PubMed DOI
Ichikawa Y, Matsuzaki M, Hiyama G, Mizushima S, Sasanami T. Sperm-egg interaction during fertilization in birds. J. Poult. Sci. 2016;53:173–180. doi: 10.2141/jpsa.0150183. PubMed DOI PMC
Damaziak K, Kieliszek M, Gozdowski D. Structural and proteomic analyses of vitelline membrane proteins of blackbird (Turdus merula) and song thrush (Turdus philomelos) Sci. Rep. 2020;10:19344. doi: 10.1038/s41598-020-76559-4. PubMed DOI PMC
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc. R. Soc. B: Biol. Sci. 2020;287:20201031. doi: 10.1098/rspb.2020.1031. PubMed DOI PMC
Hemmings N, Bennison C, Birkhead TR. Intra-ejaculate sperm selection in female zebra finches. Biol. Lett. 2016;12:20160220. doi: 10.1098/rsbl.2016.0220. PubMed DOI PMC
Brillard JP, Bakst MR. Quantification of spermatozoa in the sperm-storage tubules of turkey hens and the relation to sperm numbers in the perivitelline layer of eggs. Biol. Reprod. 1990;43:271–275. doi: 10.1095/biolreprod43.2.271. PubMed DOI
Brillard JP. Sperm storage and transport following natural mating and artificial insemination. Poult. Sci. 1993;72:923–928. doi: 10.3382/ps.0720923. PubMed DOI
Kempenaers B. The use of a breeding synchrony index. Ornis Scand. 1993;24:84. doi: 10.2307/3676415. DOI
Cramp S, Brooks DJ. Handbook of the Birds of Europe, the Middle East and North Africa The birds of the western Palearctic, vol. Vi. warblers. Oxford University Press; 1992.
Kverek P, Storchová R, Reif J, Nachwan MW. Occurrence of a hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in the Czech Republic confirmed by genetic analysis. Sylvia. 2008;44:17–26.
Wolfson A. The cloacal protuberance: A means for determining breeding condition in live male passerines. Bird-Banding. 1952;23:159–165. doi: 10.2307/4510381. DOI
Presley AD, Fuller KM, Arriaga EA. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B. 2003;793:141–150. doi: 10.1016/S1570-0232(03)00371-4. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Bray DF, Bagu J, Koegler P. Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc. Res. Tech. 1993;26:489–495. doi: 10.1002/jemt.1070260603. PubMed DOI
Hirano Y, et al. Accuracy of sperm velocity assessment using the Sperm Quality Analyzer V. Reprod. Med. Biol. 2003;2:151–157. doi: 10.1111/j.1447-0578.2003.00039.x. PubMed DOI PMC
Laskemoen T, et al. Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav. Ecol. Sociobiol. 2010;64:1473–1483. doi: 10.1007/s00265-010-0962-8. DOI
Kuntová B, Stopková R, Stopka P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018;9:26. doi: 10.3389/fgene.2018.00026. PubMed DOI PMC
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644. doi: 10.1111/2041-210X.12797. DOI
Wei, T., Simko, V. R. & Levy, M. R package ‘corrplot’: Visualization of a Correlation Matrix. Version 0.92 (2017).
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015;67:536. doi: 10.18637/jss.v067.i01. DOI
Zuur AF, et al. Mixed Effects Models and Extensions in Ecology with R. Springer; 2009.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.) 1995;57:289–300.
Montoto LG, et al. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS ONE. 2011;6:e18173. doi: 10.1371/journal.pone.0018173. PubMed DOI PMC
Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ *. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Benaglia T, Chauveau D, Hunter DR, Young DS. mixtools: An R package for analyzing mixture models. J. Stat. Softw. 2010;32:1–29.
Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R package version, 2(0) (2010).
Wu T, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC