Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species

. 2022 Dec 24 ; 12 (1) : 22275. [epub] 20221224

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36566302
Odkazy

PubMed 36566302
PubMed Central PMC9789955
DOI 10.1038/s41598-022-26101-5
PII: 10.1038/s41598-022-26101-5
Knihovny.cz E-zdroje

Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.

Zobrazit více v PubMed

Coyne, J. A. & Orr, H. A. Speciation, vol. 37 276–281 (Sinauer Associates, 2004).

Price, T. Speciation in Birds (Roberts and Co., 2008).

Birkhead TR, Brillard J-P. Reproductive isolation in birds: Postcopulatory prezygotic barriers. Trends Ecol. Evol. 2007;22:266–272. doi: 10.1016/j.tree.2007.02.004. PubMed DOI

McDonough CE, Whittington E, Pitnick S, Dorus S. Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J. Proteom. 2016;135:26–37. doi: 10.1016/j.jprot.2015.10.015. PubMed DOI

Garlovsky MD, Snook RR. Persistent postmating, prezygotic reproductive isolation between populations. Ecol. Evol. 2018;8:9062–9073. doi: 10.1002/ece3.4441. PubMed DOI PMC

Cramer ERA, Ålund M, McFarlane SE, Johnsen A, Qvarnström A. Females discriminate against heterospecific sperm in a natural hybrid zone: Cryptic female choice in a hybrid zone. Evolution. 2016;70:1844–1855. doi: 10.1111/evo.12986. PubMed DOI

Turissini DA, McGirr JA, Patel SS, David JR, Matute DR. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 2018;35:312–334. doi: 10.1093/molbev/msx271. PubMed DOI PMC

Garlovsky MD, Evans C, Rosenow MA, Karr TL, Snook RR. Seminal fluid protein divergence among populations exhibiting postmating prezygotic reproductive isolation. Mol. Ecol. 2020;29:4428–4441. doi: 10.1111/mec.15636. PubMed DOI

Birkhead TR, Pizzari T. Postcopulatory sexual selection. Nat Rev Genet. 2002;3:262–273. doi: 10.1038/nrg774. PubMed DOI

Simmons LW, Fitzpatrick JL. Sperm wars and the evolution of male fertility. Reproduction. 2012;144:519–534. doi: 10.1530/REP-12-0285. PubMed DOI

Firman RC, Gasparini C, Manier MK, Pizzari T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 2017;32:368–382. doi: 10.1016/j.tree.2017.02.010. PubMed DOI PMC

Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. How sperm competition shapes the evolution of testes and sperm: A meta-analysis. Phil. Trans. R. Soc. B. 2020;375:20200064. doi: 10.1098/rstb.2020.0064. PubMed DOI PMC

Pitnick S, Hosken DJ, Birkhead TR. Sperm morphological diversity. Sperm Biol. 2009;2009:69–149. doi: 10.1016/B978-0-12-372568-4.00003-3. DOI

Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: A comparative study of songbirds using electron microscopy. Evolution. 2018;72:1918–1932. doi: 10.1111/evo.13555. PubMed DOI

Rowe M, et al. Molecular diversification of the seminal fluid proteome in a recently diverged passerine species pair. Mol. Biol. Evol. 2020;37:488–506. doi: 10.1093/molbev/msz235. PubMed DOI PMC

Hill T, Rosales-Stephens H-L, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 Genes Genomes Genetics. 2021;11:jkab050. PubMed PMC

Tyler F, et al. Multiple post-mating barriers to hybridization in field crickets. Mol. Ecol. 2013;22:1640–1649. doi: 10.1111/mec.12187. PubMed DOI

Bakst MR, Wishart G, Brillard J-P. Oviducal sperm selection, transport, and storage in poultry. Poult. Sci. Rev. 1994;5:117–143.

Stewart SG, et al. Species specificity in avian sperm: Perivitelline interaction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2004;137:657–663. doi: 10.1016/j.cbpb.2004.01.027. PubMed DOI

Birkhead TR, Martinez JG, Burke T, Froman DP. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B. 1999;266:1759–1764. doi: 10.1098/rspb.1999.0843. PubMed DOI PMC

Malo AF, et al. Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 2005;72:822–829. doi: 10.1095/biolreprod.104.036368. PubMed DOI

Gasparini C, Simmons LW, Beveridge M, Evans JP. Sperm swimming velocity predicts competitive fertilization success in the green swordtail Xiphophorus helleri. PLoS ONE. 2010;5:e12146. doi: 10.1371/journal.pone.0012146. PubMed DOI PMC

Fitzpatrick JL, et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. PNAS. 2009;106:1128–1132. doi: 10.1073/pnas.0809990106. PubMed DOI PMC

Lüpold S, Calhim S, Immler S, Birkhead TR. Sperm morphology and sperm velocity in passerine birds. Proc. R. Soc. B. 2009;276:1175–1181. doi: 10.1098/rspb.2008.1645. PubMed DOI PMC

Tourmente M, Gomendio M, Roldan ER. Sperm competition and the evolution of sperm design in mammals. BMC Evol. Biol. 2011;11:12. doi: 10.1186/1471-2148-11-12. PubMed DOI PMC

Bennison C, Hemmings N, Slate J, Birkhead T. Long sperm fertilize more eggs in a bird. Proc. R. Soc. B. 2015;282:20141897. doi: 10.1098/rspb.2014.1897. PubMed DOI PMC

Gomendio M, Roldan ERS. Sperm competition influences sperm size in mammals. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1991;243:181–185. doi: 10.1098/rspb.1991.0029. PubMed DOI

Mossman J, Slate J, Humphries S, Birkhead T. Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution. 2009;63:2730–2737. doi: 10.1111/j.1558-5646.2009.00753.x. PubMed DOI

Fitzpatrick JL, Garcia-Gonzalez F, Evans JP. Linking sperm length and velocity: The importance of intramale variation. Biol. Lett. 2010;6:797–799. doi: 10.1098/rsbl.2010.0231. PubMed DOI PMC

Anderson MJ, Nyholt J, Dixson AF. Sperm competition and the evolution of sperm midpiece volume in mammals. J. Zool. 2005;267:135–142. doi: 10.1017/S0952836905007284. DOI

Mendonca T, Birkhead TR, Cadby AJ, Forstmeier W, Hemmings N. A trade-off between thickness and length in the zebra finch sperm mid-piece. Proc. R. Soc. B. 2018;285:20180865. doi: 10.1098/rspb.2018.0865. PubMed DOI PMC

Humphries S, Evans JP, Simmons LW. Sperm competition: Linking form to function. BMC Evol. Biol. 2008;8:319. doi: 10.1186/1471-2148-8-319. PubMed DOI PMC

Helfenstein F, Podevin M, Richner H. Sperm morphology, swimming velocity, and longevity in the house sparrow Passer domesticus. Behav. Ecol. Sociobiol. 2010;64:557–565. doi: 10.1007/s00265-009-0871-x. DOI

Cramer ERA, et al. Morphology-function relationships and repeatability in the sperm of Passer sparrows: Sparrow sperm morphology and function. J. Morphol. 2015;276:370–377. doi: 10.1002/jmor.20346. PubMed DOI

Cramer ERA, et al. Longer sperm swim more slowly in the Canary Islands chiffchaff. Cells. 2021;10:1358. doi: 10.3390/cells10061358. PubMed DOI PMC

Rojas Mora A, Meniri M, Ciprietti S, Helfenstein F. Is sperm morphology functionally related to sperm swimming ability? A case study in a wild passerine bird with male hierarchies. BMC Evol. Biol. 2018;18:142. doi: 10.1186/s12862-018-1260-8. PubMed DOI PMC

Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020;375:20200077. doi: 10.1098/rstb.2020.0077. PubMed DOI PMC

Chang AS. Conspecific sperm precedence in sister species of drosophila with overlapping ranges. Evolution. 2004;58:781–789. PubMed

Rugman-Jones PF, Eady PE. Conspecific sperm precedence in Callosobruchus subinnotatus (Coleoptera: Bruchidae): Mechanisms and consequences. Proc. R. Soc. B: Biol. Sci. 2007;274:983–988. doi: 10.1098/rspb.2006.0343. PubMed DOI PMC

Møller AP, Mousseau TA, Rudolfsen G. Females affect sperm swimming performance: A field experiment with barn swallows Hirundo rustica. Behav. Ecol. 2008;19:1343–1350. doi: 10.1093/beheco/arn068. DOI

Yeates SE, et al. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution. 2013;67:3523–3536. doi: 10.1111/evo.12208. PubMed DOI PMC

Cramer ERA, et al. Testing a post-copulatory pre-zygotic reproductive barrier in a passerine species pair. Behav. Ecol. Sociobiol. 2014;68:1133–1144. doi: 10.1007/s00265-014-1724-9. DOI

Cramer ERA, et al. Sperm performance in conspecific and heterospecific female fluid. Ecol. Evol. 2016;6:1363–1377. doi: 10.1002/ece3.1977. PubMed DOI PMC

Baer B, Eubel H, Taylor NL, O’Toole N, Millar AH. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biol. 2009;10:R67. doi: 10.1186/gb-2009-10-6-r67. PubMed DOI PMC

Riou C, et al. Avian uterine fluid proteome: Exosomes and biological processes potentially involved in sperm survival. Mol. Reprod. Dev. 2020;87:454–470. doi: 10.1002/mrd.23333. PubMed DOI

Briskie JV, Montgomerie R. Patterns of sperm storage in relation to sperm competition in passerine birds. The Condor. 1993;95:442–454. doi: 10.2307/1369366. DOI

Holt WV, Fazeli A. Sperm storage in the female reproductive tract. Annu. Rev. Anim. Biosci. 2016;4:291–310. doi: 10.1146/annurev-animal-021815-111350. PubMed DOI

Hemmings N, Birkhead T. Differential sperm storage by female zebra finches Taeniopygia guttata. Proc. R. Soc. B. 2017;284:20171032. doi: 10.1098/rspb.2017.1032. PubMed DOI PMC

Matsuzaki M, Sasanami T. Sperm storage in the female reproductive tract: A conserved reproductive strategy for better fertilization success. Adv. Exp. Med. Biol. 2017;1001:173–186. doi: 10.1007/978-981-10-3975-1_11. PubMed DOI

Presgraves DC, Baker RH, Wilkinson GS. Coevolution of sperm and female reproductive tract morphology in stalk–eyed flies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999;266:1041–1047. doi: 10.1098/rspb.1999.0741. DOI

Miller GT, Pitnick S. Sperm-female coevolution in Drosophila. Science. 2002;298:1230–1233. doi: 10.1126/science.1076968. PubMed DOI

Higginson DM, Miller KB, Segraves KA, Pitnick S. Female reproductive tract form drives the evolution of complex sperm morphology. PNAS. 2012;109:4538–4543. doi: 10.1073/pnas.1111474109. PubMed DOI PMC

Gert KR, Pauli A. Species-specific mechanisms during fertilization. Curr. Top. Dev. Biol. 2020;140:121–144. doi: 10.1016/bs.ctdb.2019.10.005. PubMed DOI

Nishio S, Matsuda T. Fertilization 1: Sperm–Egg Interaction. Avian Reproduction: From Behavior to Molecules. Springer; 2017. pp. 91–103. PubMed

Rodler D, Sasanami T, Sinowatz F. Assembly of the inner perivitelline layer, a homolog of the mammalian zona pellucida: An immunohistochemical and ultrastructural study. CTO. 2012;195:330–339. PubMed

Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: Reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC

Sorjonen J. Mixed singing and interspecific territoriality consequences of secondary contact of two ecologically and morphologically similar nightingale species in Europe. Ornis Scand. (Scand. J. Ornithol.) 1986;17:53–67. doi: 10.2307/3676753. DOI

Becker J. Sympatric occurrence and hybridization of the Thrush Nightingale (Luscinia luscinia) and the Nightingale (Luscinia megarhynchos) at Frankfurt (Oder) Brandenburg. Vogelwelt. 1995;116:109–118.

Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: Evidence from two species of nightingales. BMC Evol. Biol. 2011;11:1. doi: 10.1186/1471-2148-11-138. PubMed DOI PMC

Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 2018;87:774–789. doi: 10.1111/1365-2656.12808. PubMed DOI

Sottas C, Reif J, Kuczyński L, Reifová R. Interspecific competition promotes habitat and morphological divergence in a secondary contact zone between two hybridizing songbirds. J. Evol. Biol. 2018;31:914–923. doi: 10.1111/jeb.13275. PubMed DOI

Sottas C. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol. Ecol. 2020;24:5639.

Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J. Ornithol. 2011;152:1063–1068. doi: 10.1007/s10336-011-0700-7. DOI

Mořkovský L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 2018;27:949–958. doi: 10.1111/mec.14479. PubMed DOI PMC

Janoušek V, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC

Albrecht T, et al. Sperm divergence in a passerine contact zone: Indication of reinforcement at the gametic level. Evolution. 2019;73:202–213. doi: 10.1111/evo.13677. PubMed DOI

BirdLife International. 2017 Luscinia megarhynchos (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017: e.T22709696A111760622. 10.2305/IUCN.UK.2017-1.RLTS.T22709696A111760622.en. Accessed 14 Sep 2020 (2017).

BirdLife International. 2016 Luscinia luscinia. The IUCN Red List of Threatened Species 2016: e.T22709691A87882842. 10.2305/IUCN.UK.2016-3.RLTS.T22709691A87882842.en. Accessed 14 Sep 2020 (2017).

Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological roles of lipocalins in chemical communication, reproduction, and regulation of microbiota. Front. Physiol. 2021;12:740006. doi: 10.3389/fphys.2021.740006. PubMed DOI PMC

Howard DJ, Palumbi SR, Birge LM, Manier MK. Sperm and speciation. Sperm Biol. 2009;2009:367–403. doi: 10.1016/B978-0-12-372568-4.00009-4. DOI

Knowles LL, Markow TA. Sexually antagonistic coevolution of a postmating-prezygotic reproductive character in desert Drosophila. Proc. Natl. Acad. Sci. 2001;98:8692–8696. doi: 10.1073/pnas.151123998. PubMed DOI PMC

Hogner S, et al. Rapid sperm evolution in the bluethroat (Luscinia svecica) subspecies complex. Behav. Ecol. Sociobiol. 2013;67:1205–1217. doi: 10.1007/s00265-013-1548-z. DOI

Cramer ERA, Grønstøl G, Lifjeld JT. Flagellum tapering and midpiece volume in songbird spermatozoa. J. Morphol. 2022 doi: 10.1002/jmor.21524. PubMed DOI PMC

Gomendio M, Roldan ERS. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2004;52:439–447. doi: 10.1387/ijdb.082595mg. PubMed DOI

Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ. Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS ONE. 2010;5:e13456. doi: 10.1371/journal.pone.0013456. PubMed DOI PMC

Kleven O, et al. Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution. 2009;63:2466–2473. doi: 10.1111/j.1558-5646.2009.00725.x. PubMed DOI

Ichikawa Y, Matsuzaki M, Hiyama G, Mizushima S, Sasanami T. Sperm-egg interaction during fertilization in birds. J. Poult. Sci. 2016;53:173–180. doi: 10.2141/jpsa.0150183. PubMed DOI PMC

Damaziak K, Kieliszek M, Gozdowski D. Structural and proteomic analyses of vitelline membrane proteins of blackbird (Turdus merula) and song thrush (Turdus philomelos) Sci. Rep. 2020;10:19344. doi: 10.1038/s41598-020-76559-4. PubMed DOI PMC

Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc. R. Soc. B: Biol. Sci. 2020;287:20201031. doi: 10.1098/rspb.2020.1031. PubMed DOI PMC

Hemmings N, Bennison C, Birkhead TR. Intra-ejaculate sperm selection in female zebra finches. Biol. Lett. 2016;12:20160220. doi: 10.1098/rsbl.2016.0220. PubMed DOI PMC

Brillard JP, Bakst MR. Quantification of spermatozoa in the sperm-storage tubules of turkey hens and the relation to sperm numbers in the perivitelline layer of eggs. Biol. Reprod. 1990;43:271–275. doi: 10.1095/biolreprod43.2.271. PubMed DOI

Brillard JP. Sperm storage and transport following natural mating and artificial insemination. Poult. Sci. 1993;72:923–928. doi: 10.3382/ps.0720923. PubMed DOI

Kempenaers B. The use of a breeding synchrony index. Ornis Scand. 1993;24:84. doi: 10.2307/3676415. DOI

Cramp S, Brooks DJ. Handbook of the Birds of Europe, the Middle East and North Africa The birds of the western Palearctic, vol. Vi. warblers. Oxford University Press; 1992.

Kverek P, Storchová R, Reif J, Nachwan MW. Occurrence of a hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in the Czech Republic confirmed by genetic analysis. Sylvia. 2008;44:17–26.

Wolfson A. The cloacal protuberance: A means for determining breeding condition in live male passerines. Bird-Banding. 1952;23:159–165. doi: 10.2307/4510381. DOI

Presley AD, Fuller KM, Arriaga EA. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B. 2003;793:141–150. doi: 10.1016/S1570-0232(03)00371-4. PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Bray DF, Bagu J, Koegler P. Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc. Res. Tech. 1993;26:489–495. doi: 10.1002/jemt.1070260603. PubMed DOI

Hirano Y, et al. Accuracy of sperm velocity assessment using the Sperm Quality Analyzer V. Reprod. Med. Biol. 2003;2:151–157. doi: 10.1111/j.1447-0578.2003.00039.x. PubMed DOI PMC

Laskemoen T, et al. Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav. Ecol. Sociobiol. 2010;64:1473–1483. doi: 10.1007/s00265-010-0962-8. DOI

Kuntová B, Stopková R, Stopka P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018;9:26. doi: 10.3389/fgene.2018.00026. PubMed DOI PMC

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644. doi: 10.1111/2041-210X.12797. DOI

Wei, T., Simko, V. R. & Levy, M. R package ‘corrplot’: Visualization of a Correlation Matrix. Version 0.92 (2017).

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015;67:536. doi: 10.18637/jss.v067.i01. DOI

Zuur AF, et al. Mixed Effects Models and Extensions in Ecology with R. Springer; 2009.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.) 1995;57:289–300.

Montoto LG, et al. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS ONE. 2011;6:e18173. doi: 10.1371/journal.pone.0018173. PubMed DOI PMC

Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ *. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Benaglia T, Chauveau D, Hunter DR, Young DS. mixtools: An R package for analyzing mixture models. J. Stat. Softw. 2010;32:1–29.

Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R package version, 2(0) (2010).

Wu T, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Perez-Riverol Y, et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...