Rapid gene content turnover on the germline-restricted chromosome in songbirds

. 2023 Jul 29 ; 14 (1) : 4579. [epub] 20230729

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37516764

Grantová podpora
101002158 European Research Council - International

Odkazy

PubMed 37516764
PubMed Central PMC10387091
DOI 10.1038/s41467-023-40308-8
PII: 10.1038/s41467-023-40308-8
Knihovny.cz E-zdroje

The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.

Zobrazit více v PubMed

Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr. Opin. Genet. Dev. 2014;27:26–34. doi: 10.1016/j.gde.2014.03.012. PubMed DOI PMC

Suh A, Dion-Côté A-M. New Perspectives on the evolution of within-individual genome variation and germline/soma distinction. Genome Biol. Evol. 2021;13:evab095. doi: 10.1093/gbe/evab095. PubMed DOI PMC

Pigozzi MI, Solari AJ. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res. 1998;6:105–113. doi: 10.1023/A:1009234912307. PubMed DOI

Torgasheva, A. A. et al. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl. Acad. Sci. USA116, 11845–11850 (2019). PubMed PMC

Kinsella CM, et al. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun. 2019;10:5468. doi: 10.1038/s41467-019-13427-4. PubMed DOI PMC

Oliveros CH, et al. Earth history and the passerine superradiation. Proc. Natl. Acad. Sci. USA. 2019;116:7916–7925. doi: 10.1073/pnas.1813206116. PubMed DOI PMC

Smith, J. J., Timoshevskiy, V. A. & Saraceno, C. Programmed DNA Elimination in Vertebrates. Annu. Rev. Anim. Biosci.9, 173–201 (2021). PubMed PMC

Pei Y, et al. Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proc. Natl. Acad. Sci. USA. 2022;119:e2103960119. doi: 10.1073/pnas.2103960119. PubMed DOI PMC

Pigozzi MI, Solari AJ. The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma. 2005;114:403–409. doi: 10.1007/s00412-005-0025-5. PubMed DOI

Malinovskaya LP, et al. Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): synapsis, recombination and copy number variation. Sci. Rep. 2020;10:1058. doi: 10.1038/s41598-020-58032-4. PubMed DOI PMC

Torgasheva A, et al. Germline-restricted chromosome (GRC) in female and male meiosis of the Great tit (Parus major, Linnaeus, 1758) Front. Genet. 2021;12:768056. doi: 10.3389/fgene.2021.768056. PubMed DOI PMC

Sotelo-Muñoz M, et al. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma. 2022;131:77–86. doi: 10.1007/s00412-022-00771-6. PubMed DOI

Camacho JP, Sharbel TF, Beukeboom LW. B-chromosome evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:163–178. doi: 10.1098/rstb.2000.0556. PubMed DOI PMC

Johnson Pokorná M, Reifová R. Evolution of B chromosomes: from dispensable parasitic chromosomes to essential genomic players. Front. Genet. 2021;12:727570. doi: 10.3389/fgene.2021.727570. PubMed DOI PMC

Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 2014;71:467–478. doi: 10.1007/s00018-013-1437-7. PubMed DOI PMC

Jones RN. B-chromosome drive. Am. Nat. 1991;137:430–442. doi: 10.1086/285175. DOI

Borodin P, et al. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res. 2022;30:255–272. doi: 10.1007/s10577-022-09688-3. PubMed DOI PMC

Martis MM, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA. 2012;109:13343–13346. doi: 10.1073/pnas.1204237109. PubMed DOI PMC

Ruban A, et al. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat. Commun. 2020;11:1–12. doi: 10.1038/s41467-020-16594-x. PubMed DOI PMC

Itoh Y, Kampf K, Pigozzi MI, Arnold AP. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma. 2009;118:527–536. doi: 10.1007/s00412-009-0216-6. PubMed DOI PMC

Biederman MK, et al. Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 2018;28:1620–1627.e5. doi: 10.1016/j.cub.2018.03.067. PubMed DOI PMC

Asalone KC, Takkar AK, Saldanha CJ, Bracht JR. A transcriptomic pipeline adapted for genomic sequence discovery of germline restricted sequence in zebra finch, Taeniopygia guttata. Genome Biol. Evol. 2021;13:evab088. doi: 10.1093/gbe/evab088. PubMed DOI PMC

Mueller JC, et al. Micro germline-restricted chromosome in blue tits: evidence for meiotic functions. Mol. Biol. Evol. 2023;40:msad096. doi: 10.1093/molbev/msad096. PubMed DOI PMC

Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC

Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J. Ornithol. 2011;152:1063–1068. doi: 10.1007/s10336-011-0700-7. DOI

Mořkovský L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 2018;27:949–958. doi: 10.1111/mec.14479. PubMed DOI PMC

Albrecht T, et al. Sperm divergence in a passerine contact zone: Indication of reinforcement at the gametic level. Evolution. 2019;73:202–213. doi: 10.1111/evo.13677. PubMed DOI

Sottas C, et al. Patterns of hybridization in a secondary contact zone between two passerine species, the common nightingale Luscinia megarhynchos and the thrush nightingale Luscinia luscinia. J. Avian Biol. 2023;2023:e03061. doi: 10.1111/jav.03061. DOI

Poignet M, et al. Comparison of karyotypes in two hybridizing passerine species: conserved chromosomal structure but divergence in centromeric repeats. Front. Genet. 2021;12:768987. doi: 10.3389/fgene.2021.768987. PubMed DOI PMC

del Priore L, Pigozzi MI. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma. 2014;123:293–302. doi: 10.1007/s00412-014-0451-3. PubMed DOI

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Kawakami T, et al. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol. Ecol. 2014;23:4035–4058. doi: 10.1111/mec.12810. PubMed DOI PMC

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral Genomes. Mol. Biol. Evol. 2021;38:4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC

Peona V, et al. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. Resour. 2021;21:263–286. doi: 10.1111/1755-0998.13252. PubMed DOI PMC

Chiang D, et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods. 2009;6:99–103. doi: 10.1038/nmeth.1276. PubMed DOI PMC

Wang H, Nettleton D, Ying K. Copy number variation detection using next generation sequencing read counts. BMC Bioinform. 2014;15:109. doi: 10.1186/1471-2105-15-109. PubMed DOI PMC

Janoušek V, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC

Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC

Reddy S, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the Avian tree of life more than taxon sampling. Syst. Biol. 2017;66:857–879. doi: 10.1093/sysbio/syx041. PubMed DOI

Poignet M, et al. Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci. Rep. 2022;12:22275. doi: 10.1038/s41598-022-26101-5. PubMed DOI PMC

Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–641. doi: 10.1016/j.cell.2009.02.006. PubMed DOI

Mendez R, Richter J. Translational control by CPEB: a means to the end. Nat. Rev. Mol. Cell. Biol. 2001;2:521–529. doi: 10.1038/35080081. PubMed DOI

Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–627. doi: 10.1016/0092-8674(94)90547-9. PubMed DOI

Igea A, Méndez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29:2182–2193. doi: 10.1038/emboj.2010.111. PubMed DOI PMC

Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 2012;11:460–472. doi: 10.1016/j.arr.2012.03.004. PubMed DOI

Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol. 2017;14:568–586. doi: 10.1080/15476286.2016.1244588. PubMed DOI PMC

Rueden CT, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Pajer P, et al. Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Res. 2006;66:78–86. doi: 10.1158/0008-5472.CAN-05-1728. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540. doi: 10.1038/s41587-019-0072-8. PubMed DOI

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods. 2015;12:733–735. doi: 10.1038/nmeth.3444. PubMed DOI

Walker BJ, Abeel T, Earl AM. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

Jackman SD, et al. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinform. 2018;19:393. doi: 10.1186/s12859-018-2425-6. PubMed DOI PMC

Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics. 2018;34:725–731. doi: 10.1093/bioinformatics/btx675. PubMed DOI PMC

Warren RL, et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. Gigascience. 2015;4:35. doi: 10.1186/s13742-015-0076-3. PubMed DOI PMC

Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Zheng G, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016;34:303–311. doi: 10.1038/nbt.3432. PubMed DOI PMC

Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–767. doi: 10.1101/gr.214874.116. PubMed DOI PMC

Xu H, et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS ONE. 2012;7:e52249. doi: 10.1371/journal.pone.0052249. PubMed DOI PMC

Li H, et al. 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv10.1101/201178 (2017).

Novak P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...