Rapid gene content turnover on the germline-restricted chromosome in songbirds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
101002158
European Research Council - International
PubMed
37516764
PubMed Central
PMC10387091
DOI
10.1038/s41467-023-40308-8
PII: 10.1038/s41467-023-40308-8
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- chromozomy MeSH
- otevřené čtecí rámce MeSH
- zárodečné buňky MeSH
- zpěvní ptáci * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Palacky University Olomouc Czech Republic
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
School of Biological Sciences University of East Anglia Norwich UK
Zobrazit více v PubMed
Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr. Opin. Genet. Dev. 2014;27:26–34. doi: 10.1016/j.gde.2014.03.012. PubMed DOI PMC
Suh A, Dion-Côté A-M. New Perspectives on the evolution of within-individual genome variation and germline/soma distinction. Genome Biol. Evol. 2021;13:evab095. doi: 10.1093/gbe/evab095. PubMed DOI PMC
Pigozzi MI, Solari AJ. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res. 1998;6:105–113. doi: 10.1023/A:1009234912307. PubMed DOI
Torgasheva, A. A. et al. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl. Acad. Sci. USA116, 11845–11850 (2019). PubMed PMC
Kinsella CM, et al. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun. 2019;10:5468. doi: 10.1038/s41467-019-13427-4. PubMed DOI PMC
Oliveros CH, et al. Earth history and the passerine superradiation. Proc. Natl. Acad. Sci. USA. 2019;116:7916–7925. doi: 10.1073/pnas.1813206116. PubMed DOI PMC
Smith, J. J., Timoshevskiy, V. A. & Saraceno, C. Programmed DNA Elimination in Vertebrates. Annu. Rev. Anim. Biosci.9, 173–201 (2021). PubMed PMC
Pei Y, et al. Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proc. Natl. Acad. Sci. USA. 2022;119:e2103960119. doi: 10.1073/pnas.2103960119. PubMed DOI PMC
Pigozzi MI, Solari AJ. The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma. 2005;114:403–409. doi: 10.1007/s00412-005-0025-5. PubMed DOI
Malinovskaya LP, et al. Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): synapsis, recombination and copy number variation. Sci. Rep. 2020;10:1058. doi: 10.1038/s41598-020-58032-4. PubMed DOI PMC
Torgasheva A, et al. Germline-restricted chromosome (GRC) in female and male meiosis of the Great tit (Parus major, Linnaeus, 1758) Front. Genet. 2021;12:768056. doi: 10.3389/fgene.2021.768056. PubMed DOI PMC
Sotelo-Muñoz M, et al. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma. 2022;131:77–86. doi: 10.1007/s00412-022-00771-6. PubMed DOI
Camacho JP, Sharbel TF, Beukeboom LW. B-chromosome evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:163–178. doi: 10.1098/rstb.2000.0556. PubMed DOI PMC
Johnson Pokorná M, Reifová R. Evolution of B chromosomes: from dispensable parasitic chromosomes to essential genomic players. Front. Genet. 2021;12:727570. doi: 10.3389/fgene.2021.727570. PubMed DOI PMC
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 2014;71:467–478. doi: 10.1007/s00018-013-1437-7. PubMed DOI PMC
Jones RN. B-chromosome drive. Am. Nat. 1991;137:430–442. doi: 10.1086/285175. DOI
Borodin P, et al. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res. 2022;30:255–272. doi: 10.1007/s10577-022-09688-3. PubMed DOI PMC
Martis MM, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA. 2012;109:13343–13346. doi: 10.1073/pnas.1204237109. PubMed DOI PMC
Ruban A, et al. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat. Commun. 2020;11:1–12. doi: 10.1038/s41467-020-16594-x. PubMed DOI PMC
Itoh Y, Kampf K, Pigozzi MI, Arnold AP. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma. 2009;118:527–536. doi: 10.1007/s00412-009-0216-6. PubMed DOI PMC
Biederman MK, et al. Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 2018;28:1620–1627.e5. doi: 10.1016/j.cub.2018.03.067. PubMed DOI PMC
Asalone KC, Takkar AK, Saldanha CJ, Bracht JR. A transcriptomic pipeline adapted for genomic sequence discovery of germline restricted sequence in zebra finch, Taeniopygia guttata. Genome Biol. Evol. 2021;13:evab088. doi: 10.1093/gbe/evab088. PubMed DOI PMC
Mueller JC, et al. Micro germline-restricted chromosome in blue tits: evidence for meiotic functions. Mol. Biol. Evol. 2023;40:msad096. doi: 10.1093/molbev/msad096. PubMed DOI PMC
Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC
Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J. Ornithol. 2011;152:1063–1068. doi: 10.1007/s10336-011-0700-7. DOI
Mořkovský L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 2018;27:949–958. doi: 10.1111/mec.14479. PubMed DOI PMC
Albrecht T, et al. Sperm divergence in a passerine contact zone: Indication of reinforcement at the gametic level. Evolution. 2019;73:202–213. doi: 10.1111/evo.13677. PubMed DOI
Sottas C, et al. Patterns of hybridization in a secondary contact zone between two passerine species, the common nightingale Luscinia megarhynchos and the thrush nightingale Luscinia luscinia. J. Avian Biol. 2023;2023:e03061. doi: 10.1111/jav.03061. DOI
Poignet M, et al. Comparison of karyotypes in two hybridizing passerine species: conserved chromosomal structure but divergence in centromeric repeats. Front. Genet. 2021;12:768987. doi: 10.3389/fgene.2021.768987. PubMed DOI PMC
del Priore L, Pigozzi MI. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma. 2014;123:293–302. doi: 10.1007/s00412-014-0451-3. PubMed DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Kawakami T, et al. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol. Ecol. 2014;23:4035–4058. doi: 10.1111/mec.12810. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral Genomes. Mol. Biol. Evol. 2021;38:4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC
Peona V, et al. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. Resour. 2021;21:263–286. doi: 10.1111/1755-0998.13252. PubMed DOI PMC
Chiang D, et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods. 2009;6:99–103. doi: 10.1038/nmeth.1276. PubMed DOI PMC
Wang H, Nettleton D, Ying K. Copy number variation detection using next generation sequencing read counts. BMC Bioinform. 2014;15:109. doi: 10.1186/1471-2105-15-109. PubMed DOI PMC
Janoušek V, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC
Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC
Reddy S, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the Avian tree of life more than taxon sampling. Syst. Biol. 2017;66:857–879. doi: 10.1093/sysbio/syx041. PubMed DOI
Poignet M, et al. Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci. Rep. 2022;12:22275. doi: 10.1038/s41598-022-26101-5. PubMed DOI PMC
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–641. doi: 10.1016/j.cell.2009.02.006. PubMed DOI
Mendez R, Richter J. Translational control by CPEB: a means to the end. Nat. Rev. Mol. Cell. Biol. 2001;2:521–529. doi: 10.1038/35080081. PubMed DOI
Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–627. doi: 10.1016/0092-8674(94)90547-9. PubMed DOI
Igea A, Méndez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29:2182–2193. doi: 10.1038/emboj.2010.111. PubMed DOI PMC
Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 2012;11:460–472. doi: 10.1016/j.arr.2012.03.004. PubMed DOI
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol. 2017;14:568–586. doi: 10.1080/15476286.2016.1244588. PubMed DOI PMC
Rueden CT, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Pajer P, et al. Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Res. 2006;66:78–86. doi: 10.1158/0008-5472.CAN-05-1728. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods. 2015;12:733–735. doi: 10.1038/nmeth.3444. PubMed DOI
Walker BJ, Abeel T, Earl AM. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Jackman SD, et al. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinform. 2018;19:393. doi: 10.1186/s12859-018-2425-6. PubMed DOI PMC
Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics. 2018;34:725–731. doi: 10.1093/bioinformatics/btx675. PubMed DOI PMC
Warren RL, et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. Gigascience. 2015;4:35. doi: 10.1186/s13742-015-0076-3. PubMed DOI PMC
Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Zheng G, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016;34:303–311. doi: 10.1038/nbt.3432. PubMed DOI PMC
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–767. doi: 10.1101/gr.214874.116. PubMed DOI PMC
Xu H, et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS ONE. 2012;7:e52249. doi: 10.1371/journal.pone.0052249. PubMed DOI PMC
Li H, et al. 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv10.1101/201178 (2017).
Novak P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC