The intestinal microbiota and metabolites in patients with anorexia nervosa
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33779487
PubMed Central
PMC8018350
DOI
10.1080/19490976.2021.1902771
Knihovny.cz E-zdroje
- Klíčová slova
- BMI, EDE-Q, Microbiome, SCFA, bacteriome, dysbiosis, gut-brain-microbiota axis, mycobiome, neurotransmitter, renourishment,
- MeSH
- Archaea klasifikace růst a vývoj MeSH
- Bacteria klasifikace růst a vývoj metabolismus MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- houby klasifikace růst a vývoj metabolismus MeSH
- index tělesné hmotnosti MeSH
- kyseliny mastné těkavé metabolismus MeSH
- lidé MeSH
- longitudinální studie MeSH
- mentální anorexie metabolismus mikrobiologie MeSH
- metagenom MeSH
- mladý dospělý MeSH
- mykobiom MeSH
- neurotransmiterové látky metabolismus MeSH
- osa mozek-střevo MeSH
- střevní mikroflóra * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny mastné těkavé MeSH
- neurotransmiterové látky MeSH
Brain-gut microbiota interactions are intensively studied in connection with various neurological and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome of patients with AN (bacteriome and mycobiome) from stool samples before and after renourishment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha-diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual variation in the gut bacteriome, as well as in metagenome content compared to controls, suggesting altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, butyrate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal significant differences in alpha diversity and fungal profile composition between patients with AN and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our results show the changed profile of the gut microbiome and its metabolites in patients with severe AN. Although therapeutic partial renourishment led to increased body mass index and improved psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community compositions, did not change substantially during the hospitalization period, which can be potentially caused by only partial weight recovery.
1st Faculty of Medicine Institute of Physiology Charles University Prague Czech Republic
Department of Steroids and Proteohormones Institute of Endocrinology Prague Czech Republic
Faculty of Science Department of Zoology Charles University Prague Czech Republic
Zobrazit více v PubMed
Association AP . Diagnostic and statistical manual of mental disorders, 5th ed. Washington (DC, USA): American Psychiatric Publishing, Inc.; 2013.
Liang D, Leung RK, Guan W, Au WW.. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3. doi:10.1186/s13099-018-0230-4. PubMed DOI PMC
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017. April;17(4):219–25. doi:10.1038/nri.2017.7. PubMed DOI
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016. April 27;8(1):51. doi:10.1186/s13073-016-0307-y. PubMed DOI PMC
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017. November 25;5(1):153. doi:10.1186/s40168-017-0373-4. PubMed DOI PMC
Chong CYL, Bloomfield FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018. February 28;10(3):274. doi:10.3390/nu10030274. PubMed DOI PMC
Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, Carroll IM. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med. 2015. Nov-Dec;77(9):969–981. doi:10.1097/PSY.0000000000000247. PubMed DOI PMC
Armougom F, Henry M, Vialettes B, Raccah D, Raoult D, Ratner AJ. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009. September 23;4(9):e7125. doi:10.1371/journal.pone.0007125. PubMed DOI PMC
Morita C, Tsuji H, Hata T, Gondo M, Takakura S, Kawai K, Yoshihara K, Ogata K, Nomoto K, Miyazaki K, et al. Gut dysbiosis in patients with anorexia nervosa. PLoS One. 2015;10(12):e0145274. doi:10.1371/journal.pone.0145274. PubMed DOI PMC
Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond). 2013. November;37(11):1460–1466. doi:10.1038/ijo.2013.20. PubMed DOI PMC
Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, Anselmetti S, Scarone S, Pontiroli AE, Morace G, et al. Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS One. 2017;12(6):e0179739. doi:10.1371/journal.pone.0179739. PubMed DOI PMC
Morkl S, Lackner S, Muller W, Gorkiewicz G, Kashofer K, Oberascher A, Painold A, Holl A, Holzer P, Meinitzer A, et al. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int J Eat Disord. 2017. December;50(12):1421–1431. doi:10.1002/eat.22801. PubMed DOI
Mack I, Cuntz U, Gramer C, Niedermaier S, Pohl C, Schwiertz A, Zimmermann K, Zipfel S, Enck P, Penders J. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep. 2016. May;27(6):26752. doi:10.1038/srep26752. PubMed DOI PMC
Hanachi M, Manichanh C, Schoenenberger A, Pascal V, Levenez F, Cournede N, Dore J, Melchior JC. Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: an explicative factor of functional intestinal disorders? Clin Nutr. 2019. October;38(5):2304–2310. doi:10.1016/j.clnu.2018.10.004. PubMed DOI
Monteleone AM, Troisi J, Fasano A, Dalle Grave R, Marciello F, Serena G, Calugi S, Scala G, Corrivetti G, Cascino G, et al. Multi-omics data integration in anorexia nervosa patients before and after weight regain: a microbiome-metabolomics investigation. Clin Nutr. 2020. July 31;40(3):1137–1146. doi:10.1016/j.clnu.2020.07.021. PubMed DOI
Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015. July;39(4):509–521. doi:10.1093/femsre/fuu010. PubMed DOI
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012. June 8;336(6086):1262–1267. doi:10.1126/science.1223813. PubMed DOI
Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006. March;40(3):235–243. doi:10.1097/00004836-200603000-00015. PubMed DOI
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015. Apr-Jun;28(2):203–209. PubMed PMC
Roubalova R, Prochazkova P, Papezova H, Smitka K, Bilej M, Tlaskalova-Hogenova H. Anorexia nervosa: gut microbiota-immune-brain interactions. Clin Nutr. 2020. March;39(3):676–684. doi:10.1016/j.clnu.2019.03.023. PubMed DOI
Shetty SA, Hugenholtz F, Lahti L, Smidt H, De Vos WM. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol Rev. 2017. March 1;41(2):182–199. doi:10.1093/femsre/fuw045. PubMed DOI PMC
Furtado M, Katzman MA. Neuroinflammatory pathways in anxiety, posttraumatic stress, and obsessive compulsive disorders. Psychiatry Res. 2015. September 30;229(1–2):37–48. doi:10.1016/j.psychres.2015.05.036. PubMed DOI
Wales J, Brewin N, Cashmore R, Haycraft E, Baggott J, Cooper A, Arcelus J. Predictors of positive treatment outcome in people with anorexia nervosa treated in a specialized inpatient unit: the role of early response to treatment. Eur Eat Disord Rev. 2016. September;24(5):417–424. doi:10.1002/erv.2443. PubMed DOI
Zaneveld JR, McMinds R, Vega Thurber R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017. August;24(2):17121. doi:10.1038/nmicrobiol.2017.121. PubMed DOI
Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.00906. PubMed DOI PMC
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015. August;48:186–194. doi:10.1016/j.bbi.2015.03.016. PubMed DOI
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014. November 6;159(4):789–799. doi:10.1016/j.cell.2014.09.053. PubMed DOI PMC
Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr.. Absorption of short-chain fatty acids by the colon. Gastroenterology. 1980. June;78(6):1500–1507. doi:10.1016/S0016-5085(19)30508-6. PubMed DOI
Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT. S-adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics. 2018. January;15(1):156–175. PubMed PMC
De Berardis D, Orsolini L, Serroni N, Girinelli G, Iasevoli F, Tomasetti C, De Bartolomeis A, Mazza M, Valchera A, Fornaro M, et al. A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. CNS Neurol Disord Drug Targets. 2016;15(1):35–44. doi:10.2174/1871527314666150821103825. PubMed DOI
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8(6):e66019. doi:10.1371/journal.pone.0066019. PubMed DOI PMC
Gabaldon T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O, Arnaise S, Boisnard S, Aguileta G, Atanasova R, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013. September;14(14):623. doi:10.1186/1471-2164-14-623. PubMed DOI PMC
Prochazkova P, Roubalova R, Dvorak J, Tlaskalova-Hogenova H, Cermakova M, Tomasova P, Sediva B, Kuzma M, Bulant J, Bilej M, et al. Microbiota, microbial metabolites, and barrier function in a patient with anorexia nervosa after fecal microbiota transplantation. Microorganisms. 2019. September 10;7(9):338. doi:10.3390/microorganisms7090338. PubMed DOI PMC
Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009. August;10(8):573–584. doi:10.1038/nrn2682. PubMed DOI
Cryan JF, Kaupmann K. Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005. January;26(1):36–43. doi:10.1016/j.tips.2004.11.004. PubMed DOI
Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013. September;54(9):2325–2340. doi:10.1194/jlr.R036012. PubMed DOI PMC
Fairburn CG. Eating disorders: the transdiagnostic view and the cognitive behavioral theory. In: Fairburn CG, editor. Cognitive behavior therapy and eating disorders. New York, USA: Guilford Press; 2008. p. 7–22.
Fairburn CG, Beglin SJ. Assessment of eating disorders: interview or self-report questionnaire? Int J Eat Disord. 1994. December;16(4):363–370. PubMed
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011. March 15;108(Suppl 1):4516–4522. doi:10.1073/pnas.1000080107. PubMed DOI PMC
Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012. December;82(3):666–677. doi:10.1111/j.1574-6941.2012.01437.x. PubMed DOI
Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014. June;12(15):182. doi:10.1186/1471-2105-15-182. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016. July;13(7):581–583. doi:10.1038/nmeth.3869. PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011. August 15;27(16):2194–2200. doi:10.1093/bioinformatics/btr381. PubMed DOI PMC
Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glockner FO, Tedersoo L, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019. January 8;47(D1):D259–D264. doi:10.1093/nar/gky1022. PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi:10.7717/peerj.2584. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007. August;73(16):5261–5267. doi:10.1128/AEM.00062-07. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013. January;41(D1):D590–6. doi:10.1093/nar/gks1219. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014. May 1;30(9):1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013. April;30(4):772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
McMurdie PJ, Holmes S, Watson M. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Douglas GM, Maffei VJ, Zanevel J, Yurgel SN, Brown JR, Christopher M, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2: an improved and customizable approach for metagenome inference. BioRxiv. 2020. doi:10.1101/672295 DOI
Ye Y, Doak TG, Ouzounis CA. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol. 2009. August;5(8):e1000465. doi:10.1371/journal.pcbi.1000465. PubMed DOI PMC
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011. September;30(12):385. doi:10.1186/1471-2105-12-385. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Stat Methodol. 1995;57:289–300.
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006. July 1;78(13):4281–4290. doi:10.1021/ac051632c. PubMed DOI
Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice
The Human Mycobiome: Colonization, Composition and the Role in Health and Disease