Zinc Oxide Nanoparticles Damage Tobacco BY-2 Cells by Oxidative Stress Followed by Processes of Autophagy and Programmed Cell Death
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-0357
Agentúra na Podporu Výskumu a Vývoja
02/0044/18
Slovak Grant Agency VEGA
PubMed
32486255
PubMed Central
PMC7353174
DOI
10.3390/nano10061066
PII: nano10061066
Knihovny.cz E-zdroje
- Klíčová slova
- BY-2 cells, ZnO nanoparticles, autophagy, oxidative stress, phytotoxicity, programmed cell death,
- Publikační typ
- časopisecké články MeSH
Nanomaterials, including zinc oxide nanoparticles (ZnO NPs), have a great application potential in many fields, such as medicine, the textile industry, electronics, and cosmetics. Their impact on the environment must be carefully investigated and specified due to their wide range of application. However, the amount of data on possible negative effects of ZnO NPs on plants at the cellular level are still insufficient. Thus, we focused on the effect of ZnO NPs on tobacco BY-2 cells, i.e., a widely accepted plant cell model. Adverse effects of ZnO NPs on both growth and biochemical parameters were observed. In addition, reactive oxygen and nitrogen species visualizations confirmed that ZnO NPs may induce oxidative stress. All these changes were associated with the lipid peroxidation and changes in the plasma membrane integrity, which together with endoplasmatic reticulum and mitochondrial dysfunction led to autophagy and programmed cell death. The present study demonstrates that the phytotoxic effect of ZnO NPs on the BY-2 cells is very complex and needs further investigation.
Zobrazit více v PubMed
Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Borm P.J.A., Robbins D., Haubold S., Kuhlbusch T., Fissan H., Donaldson K., Schins R., Stone V., Kreyling W., Lademann J., et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006;3:11. doi: 10.1186/1743-8977-3-11. PubMed DOI PMC
Hu X., Cook S., Wang P., Hwang H.-M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ. 2009;407:3070–3072. doi: 10.1016/j.scitotenv.2009.01.033. PubMed DOI
Vance M.E., Kuiken T., Vejerano E.P., McGinnis S.P., Hochella M.F., Rejeski D., Hull M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015;6:1769–1780. doi: 10.3762/bjnano.6.181. PubMed DOI PMC
Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011;59:3485–3498. doi: 10.1021/jf104517j. PubMed DOI PMC
Judy J.D., Unrine J.M., Bertsch P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011;45:776–781. doi: 10.1021/es103031a. PubMed DOI
Gottschalk F., Nowack B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011;13:1145–1155. doi: 10.1039/c0em00547a. PubMed DOI
Lee J., Mahendra S., Alvarez P.J.J. Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano. 2010;4:3580–3590. doi: 10.1021/nn100866w. PubMed DOI
Seil J.T., Webster T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012;7:2767–2781. PubMed PMC
Shaw B.J., Handy R.D. Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environ. Int. 2011;37:1083–1097. doi: 10.1016/j.envint.2011.03.009. PubMed DOI
Moore M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006;32:967–976. doi: 10.1016/j.envint.2006.06.014. PubMed DOI
Besha A.T., Liu Y.J., Bekele D.N., Dong Z.M., Naidu R., Gebremariam G.N. Sustainability and environmental ethics for the application of engineered nanoparticles. Environ. Sci. Policy. 2020;103:85–98. doi: 10.1016/j.envsci.2019.10.013. DOI
Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2) Apoptosis. 2012;17:852–870. doi: 10.1007/s10495-012-0705-6. PubMed DOI
Saquib Q., Al-Khedhairy A.A., Siddiqui M.A., Abou-Tarboush F.M., Azam A., Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol. In Vitro. 2012;26:351–361. doi: 10.1016/j.tiv.2011.12.011. PubMed DOI
Huang C.C., Aronstam R.S., Chen D.R., Huang Y.W. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol. In Vitro. 2010;24:45–55. doi: 10.1016/j.tiv.2009.09.007. PubMed DOI
Asare N., Duale N., Slagsvold H.H., Lindeman B., Olsen A.K., Gromadzka-Ostrowska J., Meczynska-Wielgosz S., Kruszewski M., Brunborg G., Instanes C. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2016;10:312–321. doi: 10.3109/17435390.2015.1071443. PubMed DOI
Kohan-Baghkheirati E., Geisler-Lee J. Gene expression, protein function and pathways of arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials. 2015;5:436–467. doi: 10.3390/nano5020436. PubMed DOI PMC
Kumaran R.S., Choi Y.K., Singh V., Kim K.J., Kim H.J. Cytotoxic effects of ZnO nanoparticles on the expression of ROS-responsive genes in the human cell lines. J. Nanosci. Nanotechnol. 2016;16:210–218. doi: 10.1166/jnn.2016.10746. PubMed DOI
Ebbs S.D., Bradfield S.J., Kumar P., White J.C., Ma X.M. Projected dietary intake of zinc, copper, and cerium from consumption of carrot (daucus carota) exposed to metal oxide nanoparticles or metal ions. Front. Plant Sci. 2016;7:188. doi: 10.3389/fpls.2016.00188. PubMed DOI PMC
Ebbs S.D., Bradfield S.J., Kumar P., White J.C., Musante C., Ma X.M. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ. Sci.-Nano. 2016;3:114–126. doi: 10.1039/C5EN00161G. PubMed DOI PMC
Triboulet S., Aude-Garcia C., Armand L., Gerdil A., Diemer H., Proamer F., Collin-Faure V., Habert A., Strub J.M., Hanau D., et al. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: A combined targeted and proteomic approach. Nanoscale. 2014;6:6102–6114. doi: 10.1039/C4NR00319E. PubMed DOI
Wang B., Zhang Y.Y., Mao Z.W., Yu D.H., Gao C.Y. Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. J. Nanosci. Nanotechnol. 2014;14:5688–5696. doi: 10.1166/jnn.2014.8876. PubMed DOI
Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007;41:8484–8490. doi: 10.1021/es071445r. PubMed DOI
Pandurangan M., Kim D.H. In vitro toxicity of zinc oxide nanoparticles: A review. J. Nanopart. Res. 2015;17:158. doi: 10.1007/s11051-015-2958-9. DOI
Xiao L., Liu C.H., Chen X.N., Yang Z. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem. Toxicol. 2016;90:76–83. doi: 10.1016/j.fct.2016.02.002. PubMed DOI
Wu D.M., Ma Y., Cao Y.N., Zhang T. Mitochondrial toxicity of nanomaterials. Sci. Total Environ. 2020;702:134994. doi: 10.1016/j.scitotenv.2019.134994. PubMed DOI
Sun Z.Q., Xiong T.T., Zhang T., Wang N.F., Chen D., Li S.S. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology. 2019;28:175–188. doi: 10.1007/s10646-018-2010-9. PubMed DOI
Burman U., Saini M., Praveen K. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 2013;95:605–612. doi: 10.1080/02772248.2013.803796. DOI
Pokhrel L.R., Dubey B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 2013;452:321–332. doi: 10.1016/j.scitotenv.2013.02.059. PubMed DOI
Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012;35:905–927. doi: 10.1080/01904167.2012.663443. DOI
Yoon S.-J., Kwak J.I., Lee W.-M., Holden P.A., An Y.-J. Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study. Ecotoxicol. Environ. Saf. 2014;100:131–137. doi: 10.1016/j.ecoenv.2013.10.014. PubMed DOI
Balazova L., Babula P., Balaz M., Backorova M., Bujnakova Z., Briancin J., Kurmanbayeva A., Sagi M. Zinc oxide nanoparticles phytotoxicity on halophyte from genus Salicornia. Plant Physiol. Biochem. 2018;130:30–42. doi: 10.1016/j.plaphy.2018.06.013. PubMed DOI
Wan J.P., Wang R.T., Wang R.L., Ju Q., Wang Y.B., Xu J. Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ. Sci. Technol. 2019;53:4235–4244. doi: 10.1021/acs.est.8b06641. PubMed DOI
Lee S., Kim S., Kim S., Lee I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. 2013;20:848–854. doi: 10.1007/s11356-012-1069-8. PubMed DOI PMC
Youssef M.S., Elamawi R.M. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ. Sci. Pollut. Res. Int. 2018 doi: 10.1007/s11356-018-3250-1. PubMed DOI
Zhu J., Zou Z., Shen Y., Li J., Shi S., Han S., Zhan X. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Environ. Pollut. 2019;247:108–117. doi: 10.1016/j.envpol.2019.01.046. PubMed DOI
Zakharova O.V., Gusev A.A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects. Nanotechnologies Russia. 2019;14:311–324. doi: 10.1134/S1995078019040141. DOI
Brunner T.J., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374–4381. doi: 10.1021/es052069i. PubMed DOI
Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J.I., Wiesner M.R., Nel A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807. doi: 10.1021/nl061025k. PubMed DOI
Lin D., Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008;42:5580–5585. doi: 10.1021/es800422x. PubMed DOI
Asli S., Neumann P.M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;32:577–584. doi: 10.1111/j.1365-3040.2009.01952.x. PubMed DOI
Corredor E., Testillano P.S., Coronado M.-J., Gonzalez-Melendi P., Fernandez-Pacheco R., Marquina C., Ricardo Ibarra M., de la Fuente J.M., Rubiales D., Perez-de-Luque A., et al. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biol. 2009;9:45. doi: 10.1186/1471-2229-9-45. PubMed DOI PMC
Ma H., Williams P.L., Diamond S.A. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 2013;172:76–85. doi: 10.1016/j.envpol.2012.08.011. PubMed DOI
Krystofova O., Sochor J., Zitka O., Babula P., Kudrle V., Adam V., Kizek R. Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int. J. Environ. Res. Public Health. 2013;10:47–71. PubMed PMC
Poborilova Z., Opatrilova R., Babula P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 2013;91:1–11.
Trojan V., Chomoucka J., Krystofova O., Hubalek J., Babula P., Kizek R. Quantum dots (CdSe) modified by glutathione and their localization of tobacco BY-2 cells. J. Biotechnol. 2010;150:S479. doi: 10.1016/j.jbiotec.2010.09.726. DOI
Svobodnikova L., Kummerova M., Zezulka S., Babula P. Possible use of a Nicotiana tabacum ‘Bright Yellow 2’ cell suspension as a model to assess phytotoxicity of pharmaceuticals (diclofenac) Ecotoxicol. Environ. Saf. 2019;182:109369. doi: 10.1016/j.ecoenv.2019.109369. PubMed DOI
Poborilova Z., Ohlsson A.B., Berglund T., Vildova A., Provaznik I., Babula P. DNA hypomethylation concomitant with the overproduction of ROS induced by naphthoquinone juglone on tobacco BY-2 suspension cells. Environ. Exp. Bot. 2015;113:28–39. doi: 10.1016/j.envexpbot.2015.01.005. DOI
Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell line as the HeLa cell in the cell biology of higher plants. Int. Rev. Cytol. 1992;132:1–30.
Babula P., Vodicka O., Adam V., Kummerova M., Havel L., Hosek J., Provaznik I., Skutkova H., Beklova M., Kizek R. Effect of fluoranthene on plant cell model: Tobacco BY-2 suspension culture. Environ. Exp. Bot. 2012;78:117–126. doi: 10.1016/j.envexpbot.2011.12.024. DOI
Vagnerova K., Macura J. Determination of protease activity of plant roots. Folia Microbiol. 1974;19:322–328. doi: 10.1007/BF02873225. PubMed DOI
Charney J., Tomarelli R.M. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J. Biol. Chem. 1947;171:501–505. PubMed
Ferrarese M.L.L., Rodrigues J.D., Ferrarese O. Phenylalanine ammonia-lyase activity in soybean roots extract measured by reverse-phase high performance liquid chromatography. Plant Biol. 2000;2:152–153. doi: 10.1055/s-2000-9162. DOI
dos Santos W.D., Ferrarese M.D.L., Finger A., Teixeira A.C.N., Ferrarese O. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. J. Chem. Ecol. 2004;30:1203–1212. doi: 10.1023/B:JOEC.0000030272.83794.f0. PubMed DOI
Kovacik J., Klejdus B., Backor M., Repcak M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 2007;172:393–399. doi: 10.1016/j.plantsci.2006.10.001. DOI
Bradford M.M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Brychkova G., Yarmolinsky D., Ventura Y., Sagi M. A novel in-gel assay and an improved kinetic assay for determining In vitro sulfite reductase activity in plants. Plant Cell Physiol. 2012;53:1507–1516. doi: 10.1093/pcp/pcs084. PubMed DOI
Brewer G.J. Achromatic regions of tetrazolium stained starch gels: Inherited electrophoretic variation. Am. J. Hum. Genet. 1967;19:674. PubMed PMC
Mittler R., Zilinskas B.A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 1993;212:540–546. PubMed
Gregory E.M., Fridovic I. Visualization of catalase on acrylamide gels. Anal. Biochem. 1974;58:57–62. PubMed
Sagi M., Davydov O., Orazova S., Yesbergenova Z., Ophir R., Stratmann J.W., Fluhr R. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell. 2004;16:616–628. doi: 10.1105/tpc.019398. PubMed DOI PMC
Brychkova G., Xia Z., Yang G., Yesbergenova Z., Zhang Z., Davydov O., Fluhr R., Sagi M. Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J. 2007;50:696–709. doi: 10.1111/j.1365-313X.2007.03080.x. PubMed DOI
Helaly M.S., El-Metwally M.A., El-Hoseiny H., Omar S.A., El-Sheery N.I. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust. J. Crop Sci. 2014;8:612–624.
Czyzowska A., Barbasz A. Effect of ZnO, TiO2, Al2O3, and ZrO2 nanoparticles on wheat callus cells. Acta Biochim. Pol. 2019;66:365–370. doi: 10.18388/abp.2019_2836. PubMed DOI
Peralta-Videa J.R., Hernandez-Viezcas J.A., Zhao L., Diaz B.C., Ge Y., Priester J.H., Holden P.A., Gardea-Torresdey J.L. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol. Biochem. 2014;80:128–135. doi: 10.1016/j.plaphy.2014.03.028. PubMed DOI
Wang X., Yang X., Chen S., Li Q., Wang W., Hou C., Gao X., Wang L., Wang S. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front. Plant Sci. 2016;6:1243. doi: 10.3389/fpls.2015.01243. PubMed DOI PMC
Thunugunta T., Reddy A.C., Seetharamaiah S.K., Hunashikatti L.R., Chandrappa S.G., Kalathil N.C., Reddy L. Impact of Zinc oxide nanoparticles on eggplant (S-melongena): Studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol. 2018;12:706–713. doi: 10.1049/iet-nbt.2017.0237. PubMed DOI PMC
Dimkpa C.O., McLean J.E., Latta D.E., Manangon E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 2012;14:1125. doi: 10.1007/s11051-012-1125-9. DOI
Kim S., Lee S., Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in cucumis sativus. Water Air Soil Pollut. 2012;223:2799–2806. doi: 10.1007/s11270-011-1067-3. DOI
Lin D., Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI
Khudsar T., Mahmooduzzafar, Iqbal M., Sairam R.K. Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol. Plant. 2004;48:255–260. doi: 10.1023/B:BIOP.0000033453.24705.f5. DOI
Brown P.H., Cakmak I., Zhang Q.L. Zinc in Soils and Plants. Volume 55. Springer; Dordrecht, The Netherlands: 1993. Form and function of zinc plants; pp. 93–106.
Cakmak I. Tansley review No. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x. PubMed DOI
Hernandez-Viezcas J.A., Castillo-Michel H., Servin A.D., Peralta-Videa J.R., Gardea-Torresdey J.L. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem. Eng. J. 2011;170:346–352. doi: 10.1016/j.cej.2010.12.021. PubMed DOI PMC
Pullagurala V.L.R., Adisa I.O., Rawat S., Kim B., Barrios A.C., Medina-Velo I.A., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. Environ. Pollut. 2018;241:1175–1181. doi: 10.1016/j.envpol.2018.06.036. PubMed DOI
Hernandez-Viezcas J.A., Castillo-Michel H., Andrews J.C., Cotte M., Rico C., Peralta-Videa J.R., Ge Y., Priester J.H., Holden P.A., Gardea-Torresdey J.L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max) ACS Nano. 2013;7:1415–1423. doi: 10.1021/nn305196q. PubMed DOI
Dimkpa C.O., McLean J.E., Britt D.W., Anderson A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals. 2013;26:913–924. doi: 10.1007/s10534-013-9667-6. PubMed DOI
Kumari M., Khan S.S., Pakrashi S., Mukherjee A., Chandrasekaran N. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J. Hazard. Mater. 2011;190:613–621. doi: 10.1016/j.jhazmat.2011.03.095. PubMed DOI
Nair P.M.G., Chung I.M. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci. Total Environ. 2017;575:187–198. doi: 10.1016/j.scitotenv.2016.10.017. PubMed DOI
Muschitz A., Riou C., Mollet J.C., Gloaguen V., Faugeron C. Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc. Acta Physiol. Plant. 2015;37:245. doi: 10.1007/s11738-015-2000-y. DOI
Cifuentes Z., Custardoy L., de la Fuente J.M., Marquina C., Ibarra M.R., Rubiales D., Perez-De-Luque A. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnol. 2010;8 doi: 10.1186/1477-3155-8-26. PubMed DOI PMC
Hischemoller A., Nordmann J., Ptacek P., Mummenhoff K., Haase M. In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J. Biomed. Nanotechnol. 2009;5:278–284. doi: 10.1166/jbn.2009.1032. PubMed DOI
Lv J.T., Zhang S.Z., Luo L., Zhang J., Yang K., Christie P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci.-Nano. 2015;2:68–77. doi: 10.1039/C4EN00064A. DOI
Qin Y., Dittmer P.J., Park J.G., Jansen K.B., Palmer A.E. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc. Natl. Acad. Sci. USA. 2011;108:7351–7356. doi: 10.1073/pnas.1015686108. PubMed DOI PMC
Chen R., Huo L.L., Shi X.F., Bai R., Zhang Z.J., Zhao Y.L., Chang Y.Z., Chen C.Y. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano. 2014;8:2562–2574. doi: 10.1021/nn406184r. PubMed DOI
Tuncay E., Cicek F.A., Toy A., Turan B. Intracellular free zinc ion increase triggers hyperglycemia-induced cardiomyocyte dysfunction through endoplasmic reticulum stress. Biophys. J. 2014;106:113A. doi: 10.1016/j.bpj.2013.11.686. DOI
Singh H., Lee H.W., Heo C.H., Byun J.W., Sarkar A.R., Kim H.M. A Golgi-localized two-photon probe for imaging zinc ions. Chem. Commun. 2015;51:12099–12102. doi: 10.1039/C5CC03884G. PubMed DOI
Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. BioMetals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z. PubMed DOI
Ma H., Kabengi N.J., Bertsch P.M., Unrine J.M., Glenn T.C., Williams P.L. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size. Environ. Pollut. 2011;159:1473–1480. doi: 10.1016/j.envpol.2011.03.013. PubMed DOI
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.-J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Chevion M. A site-specific mechanism for free-radical induced biological damage: The essential role of redox-active transition-metals. Free Radical Biol. Med. 1988;5:27–37. doi: 10.1016/0891-5849(88)90059-7. PubMed DOI
Hou J., Wu Y.Z., Li X., Wei B.B., Li S.G., Wang X.K. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere. 2018;193:852–860. doi: 10.1016/j.chemosphere.2017.11.077. PubMed DOI
Kovacik J., Babula P. Fluorescence microscopy as a tool for visualization of metal-induced oxidative stress in plants. Acta Physiol. Plant. 2017;39:157. doi: 10.1007/s11738-017-2455-0. DOI
Feigl G., Lehotai N., Molnar A., Ordog A., Rodriguez-Ruiz M., Palma J.M., Corpas F.J., Erdei L., Kolbert Z. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann. Bot. 2015;116:613–625. doi: 10.1093/aob/mcu246. PubMed DOI PMC
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Cuypers A., Vangronsveld J., Clijsters H. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 2001;39:657–664. doi: 10.1016/S0981-9428(01)01276-1. DOI
Panda S.K., Chaudhury I., Khan M.H. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol. Plant. 2003;46:289–294. doi: 10.1023/A:1022871131698. DOI
Aarti P.D., Tanaka R., Tanaka A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol. Plant. 2006;128:186–197. doi: 10.1111/j.1399-3054.2006.00720.x. DOI
Thwala M., Musee N., Sikhwivhilu L., Wepener V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci.-Proc. Imp. 2013;15:1830–1843. doi: 10.1039/c3em00235g. PubMed DOI
Hafizi Z., Nasr N. The effect of zinc oxide nanoparticles on safflower plant growth and physiology. Eng. Technol. Appl. Sci. Res. 2018;8:2508–2513.
Parlak K.U., Yilmaz D.D. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicol. Environ. Saf. 2012;85:52–58. doi: 10.1016/j.ecoenv.2012.08.023. PubMed DOI
Marichali A., Dallali S., Ouerghemmi S., Sebei H., Casabianca H., Hosni K. Responses of Nigella sativa L. to zinc excess: Focus on germination, growth, yield and yield components, lipid and terpene metabolism, and total phenolics and antioxidant activities. J. Agric. Food Chem. 2016;64:1664–1675. doi: 10.1021/acs.jafc.6b00274. PubMed DOI
Parrotta L., Guerriero G., Sergeant K., Cal G., Hausman J.F. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015;6:133. doi: 10.3389/fpls.2015.00133. PubMed DOI PMC
Zafar H., Ali A., Ali J.S., Haq I.U., Zia M. Effect of ZnO nanoparticles on brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Front. Plant Sci. 2016;7:535. doi: 10.3389/fpls.2016.00535. PubMed DOI PMC
Nishida N., Arizumi T., Takita M., Kitai S., Yada N., Hagiwara S., Inoue T., Minami Y., Ueshima K., Sakurai T., et al. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig. Dis. 2013;31:459–466. doi: 10.1159/000355245. PubMed DOI
Solis M.-T., Chakrabarti N., Corredor E., Cortes-Eslava J., Rodriguez-Serrano M., Biggiogera M., Risueno M.C., Testillano P.S. Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant Cell Physiol. 2014;55:16–29. doi: 10.1093/pcp/pct152. PubMed DOI
Wang P., Zhao L., Hou H., Zhang H., Huang Y., Wang Y., Li H., Gao F., Yan S., Li L. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol. 2015;56:965–976. doi: 10.1093/pcp/pcv023. PubMed DOI
Michaeli S., Galili G., Genschik P., Fernie A.R., Avin-Wittenberg T. Autophagy in plants—What’s new on the menu? Trends Plant Sci. 2016;21:134–144. doi: 10.1016/j.tplants.2015.10.008. PubMed DOI
Kaufman R.J. Protein folding, oxidative stress, and the unfolded protein response. Int. J. Clin. Pharmacol. Ther. 2010;48:S4–S5. doi: 10.5414/CPP48004. DOI
Hetz C. Protein folding stress in neurodegenerative disease: An interplay between ER stress and autophagy. FEBS J. 2012;279:15.
Esther Perez-Perez M., Lemaire S.D., Crespo J.L. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 2012;160:156–164. doi: 10.1104/pp.112.199992. PubMed DOI PMC
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639. PubMed DOI PMC
Denton D., Shravage B., Simin R., Mills K., Berry D.L., Baehrecke E.H., Kumar S. Autophagy, not apoptosis, is essential for midgut cell death in drosophila. Curr. Biol. 2009;19:1741–1746. doi: 10.1016/j.cub.2009.08.042. PubMed DOI PMC
Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996;111:1233–1241. doi: 10.1104/pp.111.4.1233. PubMed DOI PMC
Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–667. doi: 10.1016/j.cell.2010.04.009. PubMed DOI PMC
Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009;11:1433–1437. doi: 10.1038/ncb1991. PubMed DOI
Yen W.-L., Shintani T., Nair U., Cao Y., Richardson B.C., Li Z., Hughson F.M., Baba M., Klionsky D.J. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol. 2010;188:101–114. doi: 10.1083/jcb.200904075. PubMed DOI PMC
Ghosh M., Jana A., Sinha S., Jothiramajayam M., Nag A., Chakraborty A., Mukherjee A., Mukherjee A. Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016;807:25–32. doi: 10.1016/j.mrgentox.2016.07.006. PubMed DOI
Minibayeva F., Dmitrieva S., Ponomareva A., Ryabovol V. Oxidative stress-induced autophagy in plants: The role of mitochondria. Plant Physiol. Biochem. 2012;59:11–19. doi: 10.1016/j.plaphy.2012.02.013. PubMed DOI
Minibayeva F.V., Ryabovol V., Ponomareva A. Oxidative stress-induced autophagy in wheat seedlings. S. Afr. J. Bot. 2013;86:165. doi: 10.1016/j.sajb.2013.02.100. DOI
Perez-Martin M., Perez-Perez M.E., Lemaire S.D., Crespo J.L. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. Plant Physiol. 2014;166:997–1008. doi: 10.1104/pp.114.243659. PubMed DOI PMC
Liuzzi J.P., Guo L., Yoo C., Stewart T.S. Zinc and autophagy. BioMetals. 2014;27:1087–1096. doi: 10.1007/s10534-014-9773-0. PubMed DOI PMC
Wei L.M., Wang J.F., Chen A.J., Liu J., Feng X.L., Shao L.Q. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int. J. Nanomed. 2017;12:1891–1903. doi: 10.2147/IJN.S129375. PubMed DOI PMC
Zhang L., Xu Q., Xing D., Gao C., Xiong H. Real-time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet C overexposure. Plant Physiol. 2009;150:1773–1783. doi: 10.1104/pp.108.125625. PubMed DOI PMC
Siczek L., Mostowska A. Characteristics and function of plant caspases during programmed cell death in plants. Postepy Biol. Komorki. 2012;39:159–172.
Debnath P., Mondal A., Sen K., Mishra D., Mondal N.K. Genotoxicity study of nano Al2O3, TiO2 and ZnO along with UV-B exposure: An Allium cepa root tip assay. Sci. Total Environ. 2020;713:136592. doi: 10.1016/j.scitotenv.2020.136592. PubMed DOI
Takada S., Shirakata Y., Kaneniwa N., Koike K. Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene. 1999;18:6965–6973. doi: 10.1038/sj.onc.1203188. PubMed DOI
Zhao X.S., Ren X., Zhu R., Luo Z.Y., Ren B.X. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol. 2016;180:56–70. doi: 10.1016/j.aquatox.2016.09.013. PubMed DOI
Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC
Haga N., Fujita N., Tsuruo T. Mitochondrial aggregation precedes cytochrome c 1release from mitochondria during apoptosis. Oncogene. 2003;22:5579–5585. doi: 10.1038/sj.onc.1206576. PubMed DOI
Panda K.K., Golari D., Venugopal A., Achary V.M.M., Phaomei G., Parinandi N.L., Sahu H.K., Panda B.B. Green synthesized zinc oxide (ZnO) nanoparticles induce oxidative stress and DNA damage in Lathyrus sativus L. root bioassay system. Antioxidants. 2017;6:35. doi: 10.3390/antiox6020035. PubMed DOI PMC