• Je něco špatně v tomto záznamu ?

Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1

O. Zimmermannová, K. Felcmanová, P. Rosas-Santiago, K. Papoušková, O. Pantoja, H. Sychrová,

. 2019 ; 1866 (9) : 1376-1388. [pub] 20190525

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006328

Cargo receptors in the endoplasmic reticulum (ER) recognize and help membrane and soluble proteins along the secretory pathway to reach their location and functional site. We characterized physiological properties of Saccharomyces cerevisiae strains lacking the ERV14 gene, which encodes a cargo receptor part of COPII-coated vesicles that cycles between the ER and Golgi membranes. The lack of Erv14 resulted in larger cell volume, plasma-membrane hyperpolarization, and intracellular pH decrease. Cells lacking ERV14 exhibited increased sensitivity to toxic cationic drugs and decreased ability to grow on low K+. We found no change in the localization of plasma membrane H+-ATPase Pma1, Na+, K+-ATPase Ena1 and K+ importer Trk2 or vacuolar K+-Cl- co-transporter Vhc1 in the absence of Erv14. However, Erv14 influenced the targeting of two K+-specific plasma-membrane transport systems, Tok1 (K+ channel) and Trk1 (K+ importer), that were retained in the ER in erv14Δ cells. The lack of Erv14 resulted in growth phenotypes related to a diminished amount of Trk1 and Tok1 proteins. We confirmed that Rb+ whole-cell uptake via Trk1 is not efficient in cells lacking Erv14. ScErv14 helped to target Trk1 homologues from other yeast species to the S. cerevisiae plasma membrane. The direct interaction between Erv14 and Tok1 or Trk1 was confirmed by co-immunoprecipitation and by a mating-based Split Ubiquitin System. In summary, our results identify Tok1 and Trk1 to be new cargoes for Erv14 and show this receptor to be an important player participating in the maintenance of several physiological parameters of yeast cells.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006328
003      
CZ-PrNML
005      
20200520104243.0
007      
ta
008      
200511s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbamcr.2019.05.005 $2 doi
035    __
$a (PubMed)31136755
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Zimmermannová, Olga $u Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic. Electronic address: olga.zimmermannova@fgu.cas.cz.
245    10
$a Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1 / $c O. Zimmermannová, K. Felcmanová, P. Rosas-Santiago, K. Papoušková, O. Pantoja, H. Sychrová,
520    9_
$a Cargo receptors in the endoplasmic reticulum (ER) recognize and help membrane and soluble proteins along the secretory pathway to reach their location and functional site. We characterized physiological properties of Saccharomyces cerevisiae strains lacking the ERV14 gene, which encodes a cargo receptor part of COPII-coated vesicles that cycles between the ER and Golgi membranes. The lack of Erv14 resulted in larger cell volume, plasma-membrane hyperpolarization, and intracellular pH decrease. Cells lacking ERV14 exhibited increased sensitivity to toxic cationic drugs and decreased ability to grow on low K+. We found no change in the localization of plasma membrane H+-ATPase Pma1, Na+, K+-ATPase Ena1 and K+ importer Trk2 or vacuolar K+-Cl- co-transporter Vhc1 in the absence of Erv14. However, Erv14 influenced the targeting of two K+-specific plasma-membrane transport systems, Tok1 (K+ channel) and Trk1 (K+ importer), that were retained in the ER in erv14Δ cells. The lack of Erv14 resulted in growth phenotypes related to a diminished amount of Trk1 and Tok1 proteins. We confirmed that Rb+ whole-cell uptake via Trk1 is not efficient in cells lacking Erv14. ScErv14 helped to target Trk1 homologues from other yeast species to the S. cerevisiae plasma membrane. The direct interaction between Erv14 and Tok1 or Trk1 was confirmed by co-immunoprecipitation and by a mating-based Split Ubiquitin System. In summary, our results identify Tok1 and Trk1 to be new cargoes for Erv14 and show this receptor to be an important player participating in the maintenance of several physiological parameters of yeast cells.
650    _2
$a biologický transport $x fyziologie $7 D001692
650    _2
$a COP-vezikuly $x metabolismus $7 D022181
650    _2
$a proteiny přenášející kationty $x genetika $x metabolismus $7 D027682
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    _2
$a velikost buňky $7 D048429
650    _2
$a endoplazmatické retikulum $x metabolismus $7 D004721
650    _2
$a delece genu $7 D017353
650    _2
$a regulace genové exprese u hub $7 D015966
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a Golgiho aparát $x metabolismus $7 D006056
650    _2
$a homeostáza $7 D006706
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    _2
$a membránové proteiny $x genetika $x metabolismus $7 D008565
650    _2
$a draslík $x metabolismus $7 D011188
650    _2
$a draslíkové kanály $x genetika $x metabolismus $7 D015221
650    _2
$a protonové ATPasy $x metabolismus $7 D006180
650    _2
$a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
650    _2
$a sodík $x metabolismus $7 D012964
650    _2
$a sodíko-draslíková ATPasa $x metabolismus $7 D000254
650    _2
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Felcmanová, Kristina $u Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic. Electronic address: kfelcmanova@seznam.cz.
700    1_
$a Rosas-Santiago, Paul $u Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico. Electronic address: rosp@ibt.unam.mx.
700    1_
$a Papoušková, Klára $u Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic. Electronic address: klara.papouskova@fgu.cas.cz.
700    1_
$a Pantoja, Omar $u Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico. Electronic address: omar@ibt.unam.mx.
700    1_
$a Sychrová, Hana $u Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic. Electronic address: hana.sychrova@fgu.cas.cz.
773    0_
$w MED00000719 $t Biochimica et biophysica acta. Molecular cell research $x 1879-2596 $g Roč. 1866, č. 9 (2019), s. 1376-1388
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31136755 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200520104242 $b ABA008
999    __
$a ok $b bmc $g 1525186 $s 1096384
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 1866 $c 9 $d 1376-1388 $e 20190525 $i 1879-2596 $m Biochimica et biophysica acta. Molecular cell research $n Biochem Biophys Acta $x MED00000719
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace