Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23343980
PubMed Central
PMC3564130
DOI
10.3390/ijerph10010047
PII: ijerph10010047
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- buněčné kultury MeSH
- chromatografie MeSH
- fluorescenční mikroskopie MeSH
- fytochelatiny metabolismus MeSH
- kovové nanočástice toxicita MeSH
- proteosyntéza účinky léků MeSH
- spektrofotometrie MeSH
- sulfhydrylové sloučeniny metabolismus MeSH
- tabák účinky léků růst a vývoj metabolismus MeSH
- viabilita buněk účinky léků MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- železité sloučeniny toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- ferric oxide MeSH Prohlížeč
- fytochelatiny MeSH
- sulfhydrylové sloučeniny MeSH
- železité sloučeniny MeSH
Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis - total protein content, thiols - reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The obtained results are discussed, especially in connection with already published data. Possible mechanisms of NPs' and MNPs' toxicity are introduced.
Zobrazit více v PubMed
Wang J., Asbach C., Fissan H., Hulser T., Kuhlbusch T.A.J., Thompson D., Pui D.Y.H. How can nanobiotechnology oversight advance science and industry: Examples from environmental, health, and safety studies of nanoparticles (nano-EHS) J. Nanopart. Res. 2011;13:1373–1387. doi: 10.1007/s11051-011-0236-z. DOI
Hoshino A., Manabe N., Fujioka K., Suzuki K., Yasuhara M., Yamamoto K. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: Surface modification regulates biological function, including cytotoxicity. J. Artif. Organs. 2007;10:149–157. doi: 10.1007/s10047-007-0379-y. PubMed DOI
Bhaskar S., Tian F.R., Stoeger T., Kreyling W., de la Fuente J.M., Grazu V., Borm P., Estrada G., Ntziachristos V., Razansky D. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 2010;7:1–25. doi: 10.1186/1743-8977-7-1. PubMed DOI PMC
McCarthy J.R., Bhaumik J., Karver M.R., Erdem S.S., Weissleder R. Targeted nanoagents for the detection of cancers. Mol. Oncol. 2010;4:511–528. doi: 10.1016/j.molonc.2010.08.003. PubMed DOI PMC
Kaounides L., Yu H., Harper T. Nanotechnology innovation and apptications in textites industry: Current markets and future growth trends. Mater. Technol. 2007;22:209–237.
Mokhatab S., Towler B.F. Nanomaterials hold promise in natural gas industry. Int. J. Nanotechnol. 2007;4:680–690.
Schmid K., Riediker M. Use of nanoparticles in swiss industry: A targeted survey. Environ. Sci. Technol. 2008;42:2253–2260. doi: 10.1021/es071818o. PubMed DOI
Kitisriworaphan T., Sawangdee Y. Nanotechnology in Construction 3. Springer; Berlin, Germany: 2009. Nanotechnology Divides: Development Indicators and Thai Construction Industry; pp. 251–259.
Lee J., Mahendra S., Alvarez P.J.J. Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano. 2010;4:3580–3590. doi: 10.1021/nn100866w. PubMed DOI
Weiter M., Vala M., Vynuchal J., Kubac L., Ltd T. Development of New Organic Semiconductors and Their Applications in Organic Electronics and Photonics; Proceedings ofNanocon 20102nd International Conference; Olomouc, Czech Republic. 12–14 October 2010; pp. 114–119.
Yang E.H. Engineered low-dimensional nanomaterials for sensors, actuators, and electronics. J. Micro-Nanolithogr. MEMS MOEMS. 2010;9:1–6.
Das R.N., Lin H.T., Lauffer J.M., Markovich V.R. Printable electronics: Towards materials development and device fabrication. Circuit World. 2011;37:38–45. doi: 10.1108/03056121111101278. DOI
Lahiri I., Das S., Kang C., Choi W. Application of carbon nanostructures-energy to electronics. JOM. 2011;63:70–76.
Musee N., Thwala M., Nota N. The antibacterial effects of engineered nanomaterials: Implications for wastewater treatment plants. J. Environ. Monit. 2011;13:1164–1183. doi: 10.1039/c1em10023h. PubMed DOI
Westerhoff P., Song G.X., Hristovski K., Kiser M.A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011;13:1195–1203. doi: 10.1039/c1em10017c. PubMed DOI
Musthaba S.M., Ahmad S., Ahuja A., Ali J., Baboota S. Nano approaches to enhance pharmacokinetic and pharmacodynamic activity of plant origin drugs. Curr. Nanosci. 2009;5:344–352. doi: 10.2174/157341309788921453. DOI
Vance D., Martin J., Patke S., Kane R.S. The design of polyvalent scaffolds for targeted delivery. Adv. Drug Deliv. Rev. 2009;61:931–939. doi: 10.1016/j.addr.2009.06.002. PubMed DOI
Biju V., Itoh T., Ishikawa M. Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev. 2010;39:3031–3056. doi: 10.1039/b926512k. PubMed DOI
Patra C.R., Bhattacharya R., Mukhopadhyay D., Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 2010;62:346–361. doi: 10.1016/j.addr.2009.11.007. PubMed DOI PMC
Phillips M.A., Gran M.L., Peppas N.A. Targeted nanodelivery of drugs and diagnostics. Nano Today. 2010;5:143–159. doi: 10.1016/j.nantod.2010.03.003. PubMed DOI PMC
Lee W.M., An Y.J., Yoon H., Kweon H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (phaseolus radiatus) and wheat (triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008;27:1915–1921. doi: 10.1897/07-481.1. PubMed DOI
Judy J.D., Unrine J.M., Bertsch P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011;45:776–781. doi: 10.1021/es103031a. PubMed DOI
Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011;59:3485–3498. PubMed PMC
Poelman E.H., van Loon J.J.A., Dicke M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant. Sci. 2008;13:534–541. doi: 10.1016/j.tplants.2008.08.003. PubMed DOI
Mishra V.K., Kumar A. Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig. J. Nanomater. Biostruct. 2009;4:587–592.
Gardea-Torresdey J.L., Gomez E., Peralta-Videa J., Parsons J., Tiemann K., Troiani H., Yacaman M.J. Use of XAS and TEM to determine the uptake of gold and silver and nanoparticle formation by living alfalfa plants. Abstr. Pap. Am. Chem. Soc. 2003;225:U837–U837.
Harris A.T., Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanopart. Res. 2008;10:691–695. doi: 10.1007/s11051-007-9288-5. DOI
Lin S.J., Reppert J., Hu Q., Hudson J.S., Reid M.L., Ratnikova T.A., Rao A.M., Luo H., Ke P.C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5:1128–1132. PubMed
Hernandez-Viezcas J.A., Castillo-Michel H., Servin A.D., Peralta-Videa J.R., Gardea-Torresdey J.L. Spectroscopic verification of zinc absorption and distribution in the desert plant prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem. Eng. J. 2011;170:346–352. doi: 10.1016/j.cej.2010.12.021. PubMed DOI PMC
Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I., Zharov V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA. 2011;108:1028–1033. PubMed PMC
Pavel I.E., Monahan J., Markopoulos M.M., Gagnon Z.E., NeJame B. The Bioaccumulation and Toxicity of Silver Nanoparticles in Animal and Plant Tissues. [(accessed on 1 December 2012)]. Available online: acs.confex.com/acs/cerm09/webprogram/Paper71449.html.
Chen R., Ratnikova T.A., Stone M.B., Lin S., Lard M., Huang G., Hudson J.S., Ke P.C. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small. 2010;6:612–617. doi: 10.1002/smll.200901911. PubMed DOI
Hischemoller A., Nordmann J., Ptacek P., Mummenhoff K., Haase M. In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J. Biomed. Nanotechnol. 2009;5:278–284. doi: 10.1166/jbn.2009.1032. PubMed DOI
Lopez-Moreno M.L., de la Rosa G., Hernandez-Viezcas J.A., Castillo-Michel H., Botez C.E., Peralta-Videa J.R., Gardea-Torresdey J.L. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (glycine max) plants. Environ. Sci. Technol. 2010;44:7315–7320. PubMed PMC
Parsons J.G., Lopez M.L., Gonzalez C.M., Peralta-Videa J.R., Gardea-Torresdey J.L. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ. Toxicol. Chem. 2010;29:1146–1154. PubMed
de la Rosa G., Lopez-Moreno M.L., Hernandez-Viezcas J., Montes M.O., Peralta-Videa J.R., Gardea-Torresdey J.L. Toxicity and biotransformation of ZnO nanoparticles in the desert plants prosopis juliflora-velutina, salsola tragus and parkinsonia florida. Int. J. Nanotechnol. 2011;8:492–506. doi: 10.1504/IJNT.2011.040190. DOI
Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI
Basiuk E.V., Ochoa-Olmos O.E., de la Mora-Estrada L.F. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants. J. Nanosci. Nanotechnol. 2011;11:3016–3038. doi: 10.1166/jnn.2011.3767. PubMed DOI
Corredor E., Testillano P.S., Coronado M.J., Gonzalez-Melendi P., Fernandez-Pacheco R., Marquina C., Ibarra M.R., de la Fuente J.M., Rubiales D., Perez-De-Luque A., et al. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant. Biol. 2009;9:1–11. doi: 10.1186/1471-2229-9-1. PubMed DOI PMC
Ovecka M., Lang I., Baluska F., Ismail A., Illes P., Lichtscheidl I.K. Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma. 2005;226:39–54. doi: 10.1007/s00709-005-0103-9. PubMed DOI
Zhu H., Han J., Xiao J.Q., Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008;10:713–717. doi: 10.1039/b805998e. PubMed DOI
Zhang Z.Y., He X., Zhang H.F., Ma Y.H., Zhang P., Ding Y.Y., Zhao Y.L. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics. 2011;3:816–822. doi: 10.1039/c1mt00049g. PubMed DOI
Lopez-Moreno M.L., de la Rosa G., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 2010;58:3689–3693. PubMed PMC
Ma X.M., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI
Lu C.M., Zhang C.Y., Wen J.Q., Wu G.R., Tao M.X. Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. Soybean Sci. 2002;21:168–172.
Gao F.Q., Liu C., Qu C.X., Zheng L., Yang F., Su M.G., Hong F.H. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals. 2008;21:211–217. doi: 10.1007/s10534-007-9110-y. PubMed DOI
Yang L., Watts D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 2005;158:122–132. doi: 10.1016/j.toxlet.2005.03.003. PubMed DOI
Hund-Rinke K., Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ. Sci. Pollut. Res. 2006;13:225–232. doi: 10.1065/espr2006.06.311. PubMed DOI
Lin D.H., Xing B.S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI
Ma Y.H., Kuang L.L., He X., Bai W., Ding Y.Y., Zhang Z.Y., Zhao Y.L., Chai Z.F. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere. 2010;78:273–279. doi: 10.1016/j.chemosphere.2009.10.050. PubMed DOI
Oleszczuk P., Josko I., Xing B.S. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J. Hazard. Mater. 2011;186:436–442. doi: 10.1016/j.jhazmat.2010.11.028. PubMed DOI
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Carriere M., Simon-Dekers A., Larue C., Mayne-L’Hermite M., Herlin-Boime N., Reynaud C. Investigation of nanoparticles and carbon nanotubes toxicity and transfer in bacteria and plants. Geochim. Cosmochim. Acta. 2009;73:A194–A194.
Chomoucka J., Drbohlavova J., Hubalek J., Babula P., Adam V., Kizek R. Toxicity of nanoparticles for plants. Listy Cukrov. Reparske. 2010;126:400–401.
Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell-line as the hela-cell in the cell biology of higher-plants. Int. Rev. Cytol. 1992;132:1–30. doi: 10.1016/S0074-7696(08)62452-3. DOI
Vitecek J., Adam V., Petrek J., Vacek J., Kizek R., Havel L. Esterases as a marker for growth of BY-2 tobacco cells and early somatic embryos of the norway spruce. Plant. Cell. Tissue Organ. Cult. 2004;79:195–201. doi: 10.1007/s11240-004-0660-1. DOI
Vitecek J., Adam V., Petrek J., Babula P., Novotna P., Kizek R., Havel L. Application of fluorimetric determination of esterases in plant material. Chem. Listy. 2005;99:496–501.
Synek P., Jasek O., Zajickova L., David B., Kudrle V., Pizurova N. Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater. Lett. 2011;65:982–984. doi: 10.1016/j.matlet.2010.12.048. DOI
Riener C.K., Kada G., Gruber H.J. Quick measurement of protein sulfhydryls with ellman’s reagent and with 4,4'-dithiodipyridine. Anal. Bioanal. Chem. 2002;373:266–276. doi: 10.1007/s00216-002-1347-2. PubMed DOI
Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. PubMed PMC
Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z.R., Watanabe F., Biris A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–3227. doi: 10.1021/nn900887m. PubMed DOI
Trojan V., Chomoucka J., Krystofova O., Hubalek J., Babula P., Kizek R. Quantum dots (CdSe) modified by glutathione and their localization of tobacco BY-2 cells. J. Biotechnol. 2010;150:S479–S479.
Serag M.F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M., Tokeshi M., Mizukami H., Bianco A., Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5:493–499. doi: 10.1021/nn102344t. PubMed DOI
Babula P., Opatrilova R., Krystofova O., Zehnalek J., Adam V., Havel L., Kizek R. The importance and effects of copper on plants. Listy Cukrov. Reparske. 2010;126:397–398.
Kuthanova A., Gemperlova L., Zelenkova S., Eder J., Machackova I., Opatrny Z., Cvikrova M. Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant. Physiol. Biochem. 2004;42:149–156. doi: 10.1016/j.plaphy.2003.11.003. PubMed DOI
Hemmerlin A., Reents R., Mutterer J., Feldtrauer J.F., Waldmann H., Bach T.J. Monitoring farnesol-induced toxicity in tobacco BY-2 cells with a fluorescent analog. Arch. Biochem. Biophys. 2006;448:93–103. doi: 10.1016/j.abb.2005.10.017. PubMed DOI
Yin L.Y., Huang J.Q., Li W., Liu Y.D. Microcystin-RR-induced apoptosis in tobacco BY-2 cells. Toxicon. 2006;48:204–210. doi: 10.1016/j.toxicon.2006.05.002. PubMed DOI
Huang W.M., Xing W., Li D.H., Liu Y.D. Microcystin-RR induced apoptosis in tobacco BY-2 suspension cells is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Toxicol. Vitro. 2008;22:328–337. doi: 10.1016/j.tiv.2007.09.018. PubMed DOI
Babula P., Adam V., Kizek R., Sladly Z., Havel L. Naphthoquinones as allelochemical triggers of programmed cell death. Environ. Exp. Bot. 2009;65:330–337. doi: 10.1016/j.envexpbot.2008.11.007. DOI
Cobbett C.S. Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. IUBMB Life. 2001;51:183–188. doi: 10.1080/152165401753544250. PubMed DOI
Maughan S., Foyer C.H. Engineering and genetic approaches to modulating the glutathione network in plants. Physiol. Plant. 2006;126:382–397. doi: 10.1111/j.1399-3054.2006.00684.x. DOI
Szalai G., Kellos T., Galiba G., Kocsy G. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant. Growth Regul. 2009;28:66–80. doi: 10.1007/s00344-008-9075-2. DOI
Cummins I., Dixon D.P., Freitag-Pohl S., Skipsey M., Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab. Rev. 2011;43:266–280. doi: 10.3109/03602532.2011.552910. PubMed DOI
Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. Plant glutathione s-transferase classification, structure and evolution. Afr. J. Biotech. 2011;10:8160–8165.
Kumar C., Igbaria A., D’Autreaux B., Planson A.G., Junot C., Godat E., Bachhawat A.K., Delaunay-Moisan A., Toledano M.B. Glutathione revisited: A vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 2011;30:2044–2056. doi: 10.1038/emboj.2011.105. PubMed DOI PMC
Richie J.P., Kleinman W., Marina P., Abraham P., Wynder E.L., Muscat J.E. Blood iron, glutathione, and micronutrient levels and the risk of oral cancer. Nutr. Cancer. 2008;60:474–482. doi: 10.1080/01635580801956477. PubMed DOI PMC
Kaur D., Lee D., Ragapolan S., Andersen J.K. Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: Implications for parkinson’s disease. Free Radic. Biol. Med. 2009;46:593–598. doi: 10.1016/j.freeradbiomed.2008.11.012. PubMed DOI PMC
Sharma V., Kumar B., Saxena R. Glutathione s-transferase gene deletions and their effect on iron status in hbe/beta thalassemia patients. Ann. Hematol. 2010;89:411–414. doi: 10.1007/s00277-009-0847-y. PubMed DOI
Arakawa Y., Masaoka Y., Sakai J., Higo H., Higo K. An alfalfa gene similar to glutathione s-transferase is induced in root by iron deficiency. Soil Sci. Plant. Nutr. 2002;48:111–116. doi: 10.1080/00380768.2002.10409179. DOI
Zaharieva T.B., Abadia J. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma. 2003;221:269–275. PubMed
Yamaguchi Y., Yamamoto Y., Ikegawa H., Matsumoto H. Protective effect of glutathione on the cytotoxicity caused by a combination of aluminum and iron in suspension-cultured tobacco cells. Physiol. Plant. 1999;105:417–422. doi: 10.1034/j.1399-3054.1999.105305.x. DOI
Tepe M., Harms H. Influence of abiotic stress on the GSH/GSSG system of plant-cell cultures. Zeitschrift Pflanzen. Boden. 1995;158:75–78. doi: 10.1002/jpln.19951580115. DOI
Pahlich E., Muller C., Jager H.J. New insights into the dynamics of the glutathione-ascorbate redox system of plants. J. Appl. Bot. Food Qual. Angew. Bot. 2007;81:110–120.
Cuypers A., Vangronsveld J., Clijsters H. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant. Physiol. Biochem. 2001;39:657–664. doi: 10.1016/S0981-9428(01)01276-1. DOI
Romero-Puertas M.C., Corpas F.J., Rodriguez-Serrano M., Gomez M., del Rio L.A., Sandalio L.M. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J. Plant. Physiol. 2007;164:1346–1357. doi: 10.1016/j.jplph.2006.06.018. PubMed DOI
Kondo N., Imai K., Isobe M., Goto T., Murasugi A., Wadanakagawa C., Hayashi Y. Cadystin-a and cadystin-b, major unit peptides comprising cadmium binding peptides induced in a fission yeast—Separation, revision of structures and synthesis. Tetrahedron Lett. 1984;25:3869–3872. doi: 10.1016/S0040-4039(01)91190-6. DOI
Clemens S., Persoh D. Multi-tasking phytochelatin synthases. Plant. Sci. 2009;177:266–271. doi: 10.1016/j.plantsci.2009.06.008. DOI
Kneer R., Zenk M.H. The formation of Cd-phytochelatin complexes in plant cell cultures. Phytochemistry. 1997;44:69–74. doi: 10.1016/S0031-9422(96)00514-6. DOI
Nakazawa R., Ikawa M., Yasuda K., Takenaga H. Synergistic inhibition of the growth of suspension cultured tobacco cells by simultaneous treatment with cadmium and arsenic in relation to phytochelatin synthesis. Soil Sci. Plant. Nutr. 2000;46:271–275. doi: 10.1080/00380768.2000.10408783. DOI
Nakazawa R., Ozawa T., Naito T., Kameda Y., Takenaga H. Interactions between cadmium and nickel in phytochelatin biosynthesis and the detoxification of the two metals in suspension-cultured tobacco cells. Biol. Plant. 2001;44:627–630. doi: 10.1023/A:1013727728036. DOI
Bhuiyan M.S.U., Min S.R., Jeong W.J., Sultana S., Choi K.S., Lee Y., Liu J.R. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant. Cell. Tissue Organ. Cult. 2011;107:69–77. doi: 10.1007/s11240-011-9958-y. DOI
Ramos J., Naya L., Gay M., Abian J., Becana M. Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant. Physiol. 2008;148:536–545. doi: 10.1104/pp.108.121715. PubMed DOI PMC
Ray D., Williams D.L. Characterization of the phytochelatin synthase of schistosoma mansoni. Plos Neglect. Trop. Dis. 2011;5:1–11. PubMed PMC
Loscos J., Naya L., Ramos J., Clemente M.R., Matamoros M.A., Becana M. A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant. Physiol. 2006;140:1213–1221. doi: 10.1104/pp.105.073635. PubMed DOI PMC
Zhang R., Niu Y.J., Li Y.W., Zhao C.F., Song B., Li Y., Zhou Y.K. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Environ. Toxicol. Pharmacol. 2010;30:52–60. doi: 10.1016/j.etap.2010.03.015. PubMed DOI
Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol.-Mysore. 2011;48:412–422. doi: 10.1007/s13197-011-0251-1. PubMed DOI PMC
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Asghar M.N., Khan I.U., Arshad M.N., Sherin L. Evaluation of antioxidant activity using an improved dmpd radical cation decolorization assay. Acta Chim. Slov. 2007;54:295–300.
Gulcin I. Measurement of antioxidant ability of melatonin and serotonin by the dmpd and cuprac methods as trolox equivalent. J. Enzym. Inhib. Med. Chem. 2008;23:871–876. doi: 10.1080/14756360701626223. PubMed DOI
Rodriguez-Nogales J.M., Vila-Crespo J., Gomez M. Development of a rapid method for the determination of the antioxidant capacity in cereal and legume milling products using the radical cation DMPD. Food Chem. 2011;129:1800–1805. doi: 10.1016/j.foodchem.2011.05.105. DOI
Charalampidis P.S., Veltsistas P., Karkabounas S., Evangelou A. Blue CrO5 assay: A novel spectrophotometric method for the evaluation of the antioxidant and oxidant capacity of various biological substances. Eur. J. Med. Chem. 2009;44:4162–4168. doi: 10.1016/j.ejmech.2009.05.007. PubMed DOI
Vitecek J., Petrlova J., Adam V., Havel L., Kramer K.J., Babula P., Kizek R. A fluorimetric sensor for detection of one living cell. Sensors. 2007;7:222–238. doi: 10.3390/s7030222. DOI
Young B., Wightman R., Blanvillain R., Purcel S.B., Gallois P. pH-sensitivity of YFP provides an intracellular indicator of programmed cell death. Plant. Methods. 2010;6:1–9. doi: 10.1186/1746-4811-6-1. PubMed DOI PMC