Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

. 2015 ; 10 (12) : e0145426. [epub] 20151222

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26695684

BACKGROUND: The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. METHODOLOGY/PRINCIPAL FINDINGS: Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. CONCLUSIONS/SIGNIFICANCE: The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.

Zobrazit více v PubMed

Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA. Pharmaceuticals and Endocrine Disrupting Compounds in US Drinking Water. Environ Sci Technol. 2009;43(3):597–603. 10.1021/es801845a. WOS:000262926400015. PubMed DOI

Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ Sci Technol. 2002;36(6):1202–11. 10.1021/es011055j. WOS:000174458100009. PubMed DOI

Jiang WW, Yan Y, Ma M, Wang DH, Luo Q, Wang ZJ, et al. Assessment of source water contamination by estrogenic disrupting compounds in China. J Environ Sci. 2012;24(2):320–8. 10.1016/s1001-0742(11)60746-8. WOS:000300653300021. PubMed DOI

Liu R, Zhou JL, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. J Chromatogr A. 2004;1022(1–2):179–89. WOS:000187662700021. PubMed

Hanselman TA, Graetz DA, Wilkie AC. Manure-borne estrogens as potential environmental contaminants: A review. Environ Sci Technol. 2003;37(24):5471–8. 10.1021/es034410+. WOS:000187248000001. PubMed DOI

Yu ZQ, Xiao BH, Huang WL, Peng P. Sorption of steroid estrogens to soils and sediments. Environ Toxicol Chem. 2004;23(3):531–9. 10.1897/03-192. WOS:000189122600001. PubMed DOI

Colucci MS, Bork H, Topp E. Persistence of estrogenic hormones in agricultural soils: I. 17 beta-estradiol and estrone. J Environ Qual. 2001;30(6):2070–6. WOS:000174863600025. PubMed

Carr DL, Morse AN, Zak JC, Anderson TA. Biological Degradation of Common Pharmaceuticals and Personal Care Products in Soils with High Water Content. Water Air Soil Pollut. 2011;217(1–4):127–34. 10.1007/s11270-010-0573-z. WOS:000289561000012. DOI

Bolton JL, Pisha E, Zhang FG, Qiu SX. Role of quinoids in estrogen carcinogenesis. Chem Res Toxicol. 1998;11(10):1113–27. 10.1021/tx9801007. WOS:000076642000001. PubMed DOI

Vasseur P, Cossu-Leguille C. Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere. 2006;62(7):1033–42. 10.1016/j.chemosphere.2005.05.043. WOS:000235857200001. PubMed DOI

Phipps GL, Ankley GT, Benoit DA, Mattson VR. Use of the aquatic oligochaete Lumbriculus-variegatus for assessing the toxicitiy and bioaccumulation of sediment-associated contaminants. Environ Toxicol Chem. 1993;12(2):269–79. WOS:A1993KK07000010.

OECD. Test No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei): OECD Publishing.

Krajniak KG. Annelid endocrine disruptors and a survey of invertebrate FMRFamide-related peptides. Integr Comp Biol. 2005;45(1):88–96. 10.1093/icb/45.1.88. WOS:000229123000013. PubMed DOI

Woo S, Won H, Lee A, Yum S. Oxidative stress and gene expression in diverse tissues of Oryzias javanicus exposed to 17 beta-estradiol. Mol Cell Toxicol. 2012;8(3):263–9. 10.1007/s13273-012-0032-6. WOS:000309334600007. DOI

Chaki SP, Misro MM, Gautam DK, Kaushik M, Ghosh D, Chainy GB. Estradiol treatment induces testicular oxidative stress and germ cell apoptosis in rats. Apoptosis. 2006;11(8):1427–37. 10.1007/s10495-006-8761-4. WOS:000238857400016. PubMed DOI

Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotox Environ Safe. 2003;54(3):302–14. 10.1016/s0147-6513(02)00039-8. WOS:000181976400007. PubMed DOI

Finlay-Moore O, Hartel PG, Cabrera ML. 17 beta-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter. J Environ Qual. 2000;29(5):1604–11. WOS:000089457600029.

Markman S, Guschina IA, Barnsley S, Buchanan KL, Pascoe D, Muller CT. Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent. Chemosphere. 2007;70(1):119–25. 10.1016/j.chemosphere.2007.06.045. WOS:000251408800014. PubMed DOI

Muzandu K, Shaban Z, Ishizuka M, Kazusaka A, Fujita S. Nitric oxide enhances catechol estrogen-induced oxidative stress in LNCaP cells. Free Radic Res. 2005;39(4):389–98. 10.1080/10715760400029710. WOS:000228977100006. PubMed DOI

Kanda N, Watanabe S. 17 beta-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression. J Invest Dermatol. 2003;121(6):1500–9. 10.1111/j.1523-1747.2003.12617.x. WOS:000187184600038. PubMed DOI

Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, et al. Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells. Eur J Pharmacol. 2010;626(2–3):166–70. 10.1016/j.ejphar.2009.09.060. WOS:000274090800008. PubMed DOI

Carelli S, Ceriotti A, Cabibbo A, Fassina G, Ruvo M, Sitia R. Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER. Science. 1997;277(5332):1681–4. 10.1126/science.277.5332.1681. WOS:A1997XV68400055. PubMed DOI

Devos CHR, Vonk MJ, Vooijs R, Schat H. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol. 1992;98(3):853–8. 10.1104/pp.98.3.853. WOS:A1992HL04200008. PubMed DOI PMC

Bernard E, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, et al. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. Ecotox Environ Safe. 2015;114:273–303. 10.1016/j.ecoenv.2014.04.024. WOS:000350928800035. PubMed DOI

Homa J, Olchawa E, Sturzenbaum SR, Morgan AJ, Plytycz B. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environ Pollut. 2005;135(2):275–80. 10.1016/j.envpol.2004.10.019. WOS:000227695600009. PubMed DOI

Sato M, Kondoh M. Recent studies on metallothionein: Protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med. 2002;196(1):9–22. 10.1620/tjem.196.9. WOS:000174821200002. PubMed DOI

Asselman J, Glaholt SP, Smith Z, Smagghe G, Janssen CR, Colbourne JK, et al. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. Aquat Toxicol. 2012;110:54–65. 10.1016/j.aquatox.2011.12.010. WOS:000302835900007. PubMed DOI PMC

Demuynck S, Grumiaux F, Mottler V, Schikorski D, Lemiere S, Lepretre A. Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, Oligochaeta). Comp Biochem Physiol C-Toxicol Pharmacol. 2007;145(4):658–68. 10.1016/j.cbpc.2007.03.001. WOS:000246935300018. PubMed DOI

Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio In: Bross P, Gregersen N, editors. Protein misfolding and cellular stress in disease and aging. Methods in Molecular Biology. 648: Humana Press; 2010. p. 269–77.

Hughes SL, Bundy JG, Want EJ, Kille P, Sturzenbaum SR. The Metabolomic Responses of Caenorhabditis elegans to Cadmium Are Largely Independent of Metallothionein Status, but Dominated by Changes in Cystathionine and Phytochelatins. J Proteome Res. 2009;8(7):3512–9. 10.1021/pr9001806. WOS:000267694600025. PubMed DOI

Liebeke M, Garcia-Perez I, Anderson CJ, Lawlor AJ, Bennett MH, Morris CA, et al. Earthworms produce phytochelatins in response to arsenic. PLoS One. 2013;8(11):1–13. e81271 10.1371/journal.pone.0081271. WOS:000327541700054. PubMed DOI PMC

Brulle F, Cocquerelle C, Wamalah AN, Morgan AJ, Kille P, Lepretre A, et al. cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotox Environ Safe. 2008;71(1):47–55. 10.1016/j.ecoenv.2007.10.032. WOS:000258550400006. PubMed DOI

Gruber C, Sturzenbaum S, Gehrig P, Sack R, Hunziker P, Berger B, et al. Isolation and characterization of a self-sufficient one-domain protein—(Cd)-metallothionein from Eisenia foetida. Eur J Biochem. 2000;267(2):573–82. 10.1046/j.1432-1327.2000.01035.x. WOS:000085240800031. PubMed DOI

Heger Z, Zitka O, Krizkova S, Beklova M, Kizek R, Adam V. Molecular biology of beta-estradiol-estrogen receptor complex binding to estrogen response element and the effect on cell proliferation. Neuroendocrinol Lett. 2013;34:123–9. WOS:000330901000019. PubMed

Keay J, Thornton JW. Hormone-Activated Estrogen Receptors in Annelid Invertebrates: Implications for Evolution and Endocrine Disruption. Endocrinology. 2009;150(4):1731–8. 10.1210/en.2008-1338. WOS:000264442900022. PubMed DOI PMC

Oren I, Fleishman SJ, Kessel A, Ben-Tal N. Free diffusion of steroid hormones across biomembranes: a simplex search with implicit solvent model calculations. Biophys J. 2004;87(2):768–79. 10.1529/biophysj.103.035527. WOS:000223195700005. PubMed DOI PMC

Zhang W, Song YF, Gong P, Sun TH, Zhou QX, Liu M. Earthworm cytochrome P450 determination and application as a biomarker for diagnosing PAH exposure. J Environ Monit. 2006;8(9):963–7. 10.1039/b605450a. WOS:000240236200013. PubMed DOI

Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27–49. 10.1016/j.jsbmb.2012.12.014. WOS:000327048400005. PubMed DOI PMC

Kassim R, Ramseyer C, Enescu M. Oxidation reactivity of zinc-cysteine clusters in metallothionein. J Biol Inorg Chem. 2013;18(3):333–42. 10.1007/s00775-013-0977-5. WOS:000315469100005. PubMed DOI

Sochor J, Ryvolova M, Krystofova O, Salas P, Hubalek J, Adam V, et al. Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules. 2010;15(12):8618–40. 10.3390/molecules15128618. WOS:000285709000008. PubMed DOI PMC

Heger Z, Gumulec J, Cernei N, Tmejova K, Kopel P, Balvan J, et al. 17 beta-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: an in vitro study on the MCF-7 cell line. Oncol Rep. 2015;33(2):921–9. 10.3892/or.2014.3627. WOS:000348338500054. PubMed DOI

Kominkova M, Michalek P, Cihalova K, Guran R, Cernei N, Nejdl L, et al. Study of linkage between glutathione pathway and the antibiotic resistance of Escherichia coli from patients’ swabs. Int J Mol Sci. 2015;16(4):7210–29. 10.3390/ijms16047210 PubMed DOI PMC

Krystofova O, Sochor J, Zitka O, Babula P, Kudrle V, Adam V, et al. Effect of magnetic nanoparticles on tobacco by-2 cell suspension culture. Int J Environ Res Public Health. 2013;10(1):47–71. 10.3390/ijerph10010047. WOS:000314026400003. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...