Study of linkage between glutathione pathway and the antibiotic resistance of Escherichia coli from patients' swabs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
25837469
PubMed Central
PMC4425013
DOI
10.3390/ijms16047210
PII: ijms16047210
Knihovny.cz E-zdroje
- MeSH
- bakteriální léková rezistence účinky léků genetika MeSH
- buthionin sulfoximin farmakologie MeSH
- Escherichia coli účinky léků genetika MeSH
- glutathion genetika MeSH
- glutathionperoxidasa genetika MeSH
- glutathionreduktasa genetika MeSH
- glutathionsynthasa genetika MeSH
- kinetika MeSH
- lidé MeSH
- mutace účinky léků genetika MeSH
- signální transdukce účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- buthionin sulfoximin MeSH
- glutathion MeSH
- glutathionperoxidasa MeSH
- glutathionreduktasa MeSH
- glutathionsynthasa MeSH
In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase-GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of "more resistant" E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group.
Zobrazit více v PubMed
Sullivan A., Edlund C., Nord C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001;1:101–114. doi: 10.1016/S1473-3099(01)00066-4. PubMed DOI
Babior B.M. Oxyden-dependent mirobial killing by phagocytes. N. Engl. J. Med. 1978;298:659–668. doi: 10.1056/NEJM197803232981205. PubMed DOI
Tlaskalova-Hogenova H., Stepankova R., Hudcovic T., Tuckova L., Cukrowska B., Lodinova-Zadnikova R., Kozakova H., Rossmann P., Bartova J., Sokol D., et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 2004;93:97–108. PubMed
Malic S., Hill K.E., Hayes A., Percival S.L., Thomas D.W., Williams D.W. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH) Microbiology. 2009;155:2603–2611. doi: 10.1099/mic.0.028712-0. PubMed DOI
Melendez J.H., Frankel Y.M., An A.T., Williams L., Price L.B., Wang N.Y., Lazarus G.S., Zenilman J.M. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin. Microbiol. Infect. 2010;16:1762–1769. doi: 10.1111/j.1469-0691.2010.03158.x. PubMed DOI
Rhoads D.D., Wolcott R.D., Sun Y., Dowd S.E. Comparison of culture and molecular identification of bacteria in chronic wounds. Int. J. Mol. Sci. 2012;13:2535–2550. doi: 10.3390/ijms13032535. PubMed DOI PMC
Fang F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004;2:820–832. doi: 10.1038/nrmicro1004. PubMed DOI
Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999;232:3–14. doi: 10.1016/S0022-1759(99)00146-5. PubMed DOI
Aoyama K., Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci. 2013;14:21021–21044. doi: 10.3390/ijms141021021. PubMed DOI PMC
Meister A., Anderson M.E. Glutathione. Annu. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. PubMed DOI
Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012;13:3145–3175. doi: 10.3390/ijms13033145. PubMed DOI PMC
Masip L., Veeravalli K., Georgioui G. The many faces of glutathione in bacteria. Antioxid. Redox Signal. 2006;8:753–762. doi: 10.1089/ars.2006.8.753. PubMed DOI
Ullevig S., Kim H.S., Asmis R. S-Glutathionylation in monocyte and macrophage (dys) function. Int. J. Mol. Sci. 2013;14:15212–15232. doi: 10.3390/ijms140815212. PubMed DOI PMC
Knejzlik Z., Kas J., Ruml T. Mechanism of xenobiotics entry into the organism and their detoxication. Chem. Listy. 2000;94:913–918.
Kullisaar T., Songisepp E., Aunapuu M., Kilk K., Arend A., Mikelsaar M., Rehema A., Zilmer M. Complete glutathione system in probiotic lactobacillus fermentum ME-3. Appl. Biochem. Microbiol. 2010;46:481–486. doi: 10.1134/S0003683810050030. PubMed DOI
Fahey R.C., Brown W.C., Adams W.B., Worsham M.B. Occurrence of glutathione in bacteria. J. Bacteriol. 1978;133:1126–1129. PubMed PMC
Li Y., Hugenholtz J., Abee T., Molenaar D. Glutathione protects Lactococcus lactis against oxidative stress. Appl. Environ. Microbiol. 2003;69:5739–5745. doi: 10.1128/AEM.69.10.5739-5745.2003. PubMed DOI PMC
Meister A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1988;263:17205–17208. PubMed
Garcia-Gimenez J.L., Markovic J., Dasi F., Queval G., Schnaubelt D., Foyer C.H., Pallardo F.V. Nuclear glutathione. Biochim. Biophys. Acta. 2013;1830:3304–3316. doi: 10.1016/j.bbagen.2012.10.005. PubMed DOI
Lu S.C. Glutathione synthesis. Biochim. Biophys. Acta. 2013;1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008. PubMed DOI PMC
Pophaly S.D., Singh R., Kaushik J.K., Tomar S.K. Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb. Cell. Fact. 2012;11:1–14. doi: 10.1186/1475-2859-11-114. PubMed DOI PMC
Mos I., Micle O., Zdranca M., Muresan M., Vicas L. Antibiotic sensitivity of the Escherichia coli strains isolated from infected skin wounds. Farmacia. 2010;58:637–645.
Butler E., Oien R.F., Lindholm C., Olofsson T.C., Nilson B., Vasquez A. A pilot study investigating lactic acid bacterial symbionts from the honeybee in inhibiting human chronic wound pathogens. Int. Wound J. 2014;2014:1–9. PubMed PMC
Allocati N., Masulli M., Alexeyev M.F., di Ilio C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health. 2013;10:6235–6254. doi: 10.3390/ijerph10126235. PubMed DOI PMC
Kumar S., Kasturia N., Sharma A., Datt M., Bachhawat A.K. Redox-dependent stability of the gamma-glutamylcysteine synthetase enzyme of Escherichia coli: A novel means of redox regulation. Biochem. J. 2013;449:783–794. doi: 10.1042/BJ20120204. PubMed DOI
Kwee J.K. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: A strange case of Dr. Jekyll and Mr. Hyde. Biomed Res. Int. 2014;2014:1–10. doi: 10.1155/2014/209845. PubMed DOI PMC
Bautista-Trujillo G.U., Solorio-Rivera J.L., Renteria-Solorzano I., Carranza-German S.I., Bustos-Martinez J.A., Arteaga-Garibay R.I., Baizabal-Aguirre V.M., Cajero-Juarez M., Bravo-Patino A., Valdez-Alarcon J.J. Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis. J. Med. Microbiol. 2013;62:369–376. doi: 10.1099/jmm.0.046284-0. PubMed DOI
Stojanovic P., Kocic B., Stojanovic M., Miljkovic-Selimovic B., Tasic S., Miladinovic-Tasic N., Babic T. Clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile cultivated from stool samples of hospitalized patients. Braz. J. Microbiol. 2012;43:215–223. PubMed PMC
Bosch-Mestres J., Martin-Fernandez R.M., de Anta-Losada M.T.J. Comparative study of three culture media for detecting group B Streptococcus colonization in pregnant women. Enferm. Infecc. Microbiol. Clin. 2003;21:346–349. doi: 10.1016/S0213-005X(03)72961-9. PubMed DOI
Lasch P., Fleige C., Stammler M., Layer F., Nubel U., Witte W., Werner G. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J. Microbiol. Methods. 2014;100:58–69. doi: 10.1016/j.mimet.2014.02.015. PubMed DOI
Cernei N., Heger Z., Kopel P., Skladanka J., Zitka O., Adam V., Kizek R. Isolation of biogenic amines using paramagnetic microparticles off-line coupled with ion exchange liquid chromatography. Chromatographia. 2014;77:1451–1459. doi: 10.1007/s10337-014-2731-8. DOI