CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
(AF-IGA2019-IP063)
Individual IGA 2019
(LQ1601)
CEITEC 2020
PubMed
31623115
PubMed Central
PMC6835635
DOI
10.3390/nano9101463
PII: nano9101463
Knihovny.cz E-zdroje
- Klíčová slova
- QDs, antibacterial, biosynthesis, cell-penetrating peptide, tryptone,
- Publikační typ
- časopisecké články MeSH
The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel "green" route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.
Zobrazit více v PubMed
Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 2008;5:763–775. doi: 10.1038/nmeth.1248. PubMed DOI
Choi H.S., Liu W., Liu F., Nasr K., Misra P., Bawendi M.G., Frangioni J.V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2009;5:42. doi: 10.1038/nnano.2009.314. PubMed DOI PMC
Nann T., Skinner W.M. Quantum Dots for Electro-Optic Devices. ACS Nano. 2011;5:5291–5295. doi: 10.1021/nn2022974. PubMed DOI
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Peng Z.A., Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001;123:183–184. doi: 10.1021/ja003633m. PubMed DOI
Qu L., Peng X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 2002;124:2049–2055. doi: 10.1021/ja017002j. PubMed DOI
Dahl J.A., Maddux B.L.S., Hutchison J.E. Toward Greener Nanosynthesis. Chem. Rev. 2007;107:2228–2269. doi: 10.1021/cr050943k. PubMed DOI
Mi C.C., Wang Y.Y., Zhang J.P., Huang H.Q., Xu L.R., Wang S., Fang X.X., Fang J., Mao C.B., Xu S.K. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J. Biotechnol. 2011;153:125–132. doi: 10.1016/j.jbiotec.2011.03.014. PubMed DOI PMC
Park T.J., Lee S.Y., Heo N.S., Seo T.S. In Vivo Synthesis of Diverse Metal Nanoparticles by Recombinant Escherichia coli. Angew. Chem. Int. Ed. 2010;49:7019–7024. doi: 10.1002/anie.201001524. PubMed DOI
Kominkova M., Michalek P., Moulick A., Nemcova B., Zitka O., Kopel P., Beklova M., Adam V., Kizek R. Biosynthesis of Quantum Dots (CdTe) and its Effect on Eisenia fetida and Escherichia coli. Chromatographia. 2014;77:1441–1449. doi: 10.1007/s10337-014-2775-9. DOI
Bai H.J., Zhang Z.M., Gong J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett. 2006;28:1135–1139. doi: 10.1007/s10529-006-9063-1. PubMed DOI
Smith P.R., Holmes J.D., Richardson D.J., Russell D.A., Sodeau J.R. Photophysical and photochemical characterisation of bacterial semiconductor cadmium sulfide particles. J. Chem. Soc. Faraday Trans. 1998;94:1235–1241. doi: 10.1039/a708742j. DOI
Holmes J.D., Smith P.R., Evansgowing R., Richardson D.J., Russell D.A., Sodeau J.R. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch. Microbiol. 1995;163:143–147. doi: 10.1007/BF00381789. PubMed DOI
Li X., Chen S.Y., Hu W.L., Shi S.K., Shen W., Zhang X., Wang H.P. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr. Polym. 2009;76:509–512. doi: 10.1016/j.carbpol.2008.11.014. DOI
Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002;78:583–588. doi: 10.1002/bit.10233. PubMed DOI
Kowshik M., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 2002;14:815–818. doi: 10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K. PubMed DOI
Seshadri S., Saranya K., Kowshik M. Green Synthesis of Lead Sulfide Nanoparticles by the Lead Resistant Marine Yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 2011;27:1464–1469. doi: 10.1002/btpr.651. PubMed DOI
Dhillon G.S., Brar S.K., Kaur S., Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol. 2012;32:49–73. doi: 10.3109/07388551.2010.550568. PubMed DOI
Chen G.Q., Yi B., Zeng G.M., Niu Q.Y., Yan M., Chen A.W., Du J.J., Huang J., Zhang Q.H. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloid. Surf. B Biointerfaces. 2014;117:199–205. doi: 10.1016/j.colsurfb.2014.02.027. PubMed DOI
Gallardo C., Monras J.P., Plaza D.O., Collao B., Saona L.A., Duran-Toro V., Venegas F.A., Soto C., Ulloa G., Vasquez C.C., et al. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J. Biotechnol. 2014;187:108–115. doi: 10.1016/j.jbiotec.2014.07.017. PubMed DOI
Tan L.J., Wan A.J., Li H.L. Synthesis of near-Infrared Quantum Dots in Cultured Cancer Cells. ACS Appl. Mater. Interfaces. 2014;6:18–23. doi: 10.1021/am404534v. PubMed DOI
Sturzenbaum S.R., Hockner M., Panneerselvam A., Levitt J., Bouillard J.S., Taniguchi S., Dailey L.A., Khanbeigi R.A., Rosca E.V., Thanou M., et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013;8:57–60. doi: 10.1038/nnano.2012.232. PubMed DOI
Trabelsi H., Azzouz I., Ferchichi S., Tebourbi O., Sakly M., Abdelmelek H. Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium. Int. J. Nanomed. 2013;8:3447–3453. doi: 10.2147/IJN.S49323. PubMed DOI PMC
Trabelsi H., Azzouz I., Sakly M., Abdelmelek H. Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. Int. J. Nanomed. 2013;8:1121–1128. doi: 10.2147/IJN.S39426. PubMed DOI PMC
Jamba L., Nehru B., Bansal M.P. Effect of selenium supplementation on the influence of cadmium on glutathione and glutathione peroxidase system in mouse liver. J. Trace Elem. Exp. Med. 2000;13:299–304. doi: 10.1002/1520-670X(2000)13:3<299::AID-JTRA7>3.0.CO;2-P. DOI
Ulloa G., Collao B., Araneda M., Escobar B., Álvarez S., Bravo D., Pérez-Donoso J.M. Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH. Enzym. Microb. Technol. 2016;95:217–224. doi: 10.1016/j.enzmictec.2016.09.005. PubMed DOI
Tan R., Liu J., Li M., Huang J., Sun J., Qu H. Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university-affiliated hospital in Shanghai. J. Microbiol. Immunol. Infect. 2014;47:87–94. doi: 10.1016/j.jmii.2012.11.006. PubMed DOI
McNeece G., Naughton V., Woodward M.J., Dooley J.S.G., Naughton P.J. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int. J. Food Microbiol. 2014;179:24–32. doi: 10.1016/j.ijfoodmicro.2014.03.019. PubMed DOI
Habiba K., Bracho-Rincon D.P., Gonzalez-Feliciano J.A., Villalobos-Santos J.C., Makarov V.I., Ortiz D., Avalos J.A., Gonzalez C.I., Weiner B.R., Morell G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl. Mater. Today. 2015;1:80–87. doi: 10.1016/j.apmt.2015.10.001. DOI
Moulick A., Milosavljevic V., Vlachova J., Podgajny R., Hynek D., Kopel P., Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int. J. Nanomed. 2017;12:1277–1291. doi: 10.2147/IJN.S121840. PubMed DOI PMC
Chudobova D., Dobes J., Nejdl L., Maskova D., Rodrigo M.A.M., Nedecky B.R., Krystofova O., Kynicky J., Konecna M., Pohanka M., et al. Oxidative Stress in Staphylococcus aureus Treated with Silver(I) Ions Revealed by Spectrometric and Voltammetric Assays. Int. J. Electrochem. Sci. 2013;8:4422–4440.
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI
Kominkova M., Michalek P., Cihalova K., Guran R., Cernei N., Nejdl L., Smerkova K., Dostalova S., Chudobova D., Heger Z., et al. Study of linkage between glutathione pathway and the antibiotic resistance of Escherichia coli from patients’ swabs. Int J Mol Sci. 2015;16:7210–7229. doi: 10.3390/ijms16047210. PubMed DOI PMC
Silva R.C., Castilho B.A., Sattlegger E. A Rapid Extraction Method for mammalian cell cultures, suitable for quantitative immunoblotting analysis of proteins, including phosphorylated GCN2 and eIF2α. MethodsX. 2018;5:75–82. doi: 10.1016/j.mex.2017.10.008. PubMed DOI PMC
Bzducha-Wróbel A., Błażejak S., Kawarska A., Stasiak-Różańska L., Gientka I., Majewska E. Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation. Molecules. 2014;19:20941–20961. doi: 10.3390/molecules191220941. PubMed DOI PMC
Dunn B., Wobbe C.R. Preparation of Protein Extracts from Yeast. Curr. Protoc. Mol. Biol. 1993;23:13.13.11–13.13.19. doi: 10.1002/0471142727.mb1313s23. PubMed DOI
Fang Q., Dong Y., Chen Y., Lu C.-H., Chi Y., Yang H.-H., Yu T. Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon. 2017;118:319–326. doi: 10.1016/j.carbon.2017.03.061. DOI
Dong C., Qian H., Fang N., Ren J. Study of Fluorescence Quenching and Dialysis Process of CdTe Quantum Dots, Using Ensemble Techniques and Fluorescence Correlation Spectroscopy. J. Phys. Chem. B. 2006;110:11069–11075. doi: 10.1021/jp060279r. PubMed DOI
Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI
Nejdl L., Kudr J., Moulick A., Hegerova D., Ruttkay-Nedecky B., Gumulec J., Cihalova K., Smerkova K., Dostalova S., Krizkova S., et al. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. Plos One. 2017:12. doi: 10.1371/journal.pone.0180798. PubMed DOI PMC
Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M.A., Buchtelova H., Podgajny R., Hynek D., Kopel P., et al. Real-Time Visualization of Cell Membrane Damage Using Gadolinium–Schiff Base Complex-Doped Quantum Dots. ACS Appl. Mater. Interfaces. 2018;10:35859–35868. doi: 10.1021/acsami.8b15868. PubMed DOI
Zhu M.-Q., Chang E., Sun J., Drezek R.A. Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 2007;17:800–805. doi: 10.1039/B614432B. DOI
Dostalova S., Moulick A., Milosavljevic V., Guran R., Kominkova M., Cihalova K., Heger Z., Blazkova L., Kopel P., Hynek D., et al. Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Mon. Für Chem. Chem. Mon. 2016;147:905–918. doi: 10.1007/s00706-016-1675-0. DOI
Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC
Sanches P.R.S., Carneiro B.M., Batista M.N., Braga A.C.S., Lorenzon E.N., Rahal P., Cilli E.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity. Amino Acids. 2015;47:1433–1443. doi: 10.1007/s00726-015-1980-7. PubMed DOI
Jelinkova P., Vesely R., Cihalova K., Hegerova D., Ananbeh H.A.A.A., Richtera L., Smerkova K., Brtnicky M., Kynicky J., Moulick A., et al. Effect of arsenic (III and V) on oxidative stress parameters in resistant and susceptible Staphylococcus aureus. Environ. Res. 2018;166:394–401. doi: 10.1016/j.envres.2018.06.024. PubMed DOI
Haque M.A., Imamura R., Brown G.A., Krishnamurthi V.R., Niyonshuti I.I., Marcelle T., Mathurin L.E., Chen J., Wang Y. An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC Adv. 2017;7:56173–56182. doi: 10.1039/C7RA10495B. DOI
DeStefano Shields C.E., Van Meerbeke S.W., Housseau F., Wang H., Huso D.L., Casero R.A., Jr., O’Hagan H.M., Sears C.L. Reduction of Murine Colon Tumorigenesis Driven by Enterotoxigenic Bacteroides fragilis Using Cefoxitin Treatment. J. Infect. Dis. 2016;214:122–129. doi: 10.1093/infdis/jiw069. PubMed DOI PMC
Kensche A., Kirsch J., Mintert S., Enders F., Pötschke S., Basche S., König B., Hannig C., Hannig M. Impact of customary fluoride rinsing solutions on the pellicle’s protective properties and bioadhesion in situ. Sci. Rep. 2017;7:16584. doi: 10.1038/s41598-017-16677-8. PubMed DOI PMC
Hannig C., Hannig M., Rehmer O., Braun G., Hellwig E., Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch. Oral Biol. 2007;52:1048–1056. doi: 10.1016/j.archoralbio.2007.05.006. PubMed DOI
Li Y., Cui R., Zhang P., Chen B.-B., Tian Z.-Q., Li L., Hu B., Pang D.-W., Xie Z.-X. Mechanism-Oriented Controllability of Intracellular Quantum Dots Formation: The Role of Glutathione Metabolic Pathway. ACS Nano. 2013;7:2240–2248. doi: 10.1021/nn305346a. PubMed DOI
Wu S.-M., Su Y., Liang R.-R., Ai X.-X., Qian J., Wang C., Chen J.-Q., Yan Z.-Y. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae. RSC Adv. 2015;5:79184–79191. doi: 10.1039/C5RA13011E. DOI
Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustafsson J.-Å, Wright A.P.H., Spyrou G. Identification and Functional Characterization of a Novel Mitochondrial Thioredoxin System in Saccharomyces cerevisiae. J. Biol. Chem. 1999;274:6366–6373. doi: 10.1074/jbc.274.10.6366. PubMed DOI
Tarze A., Dauplais M., Grigoras I., Lazard M., Ha-Duong N.-T., Barbier F., Blanquet S., Plateau P. Extracellular Production of Hydrogen Selenide Accounts for Thiol-assisted Toxicity of Selenite against Saccharomyces cerevisiae. J. Biol. Chem. 2007;282:8759–8767. doi: 10.1074/jbc.M610078200. PubMed DOI
Cui R., Liu H.-H., Xie H.-Y., Zhang Z.-L., Yang Y.-R., Pang D.-W., Xie Z.-X., Chen B.-B., Hu B., Shen P. Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Adv. Funct. Mater. 2009;19:2359–2364. doi: 10.1002/adfm.200801492. DOI
Bardajee G.R., Hooshyar Z., Jafarpour F. Antibacterial and optical properties of a new water soluble CdSe quantum dots coated by multidentate biopolymer. J. Photochem. Photobiol. A Chem. 2013;252:46–52. doi: 10.1016/j.jphotochem.2012.10.001. DOI
Walling M.A., Novak J.A., Shepard J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009;10:441–491. doi: 10.3390/ijms10020441. PubMed DOI PMC
Jin S., Hu Y., Gu Z., Liu L., Wu H.-C. Application of Quantum Dots in Biological Imaging. J. Nanomater. 2011;2011:13. doi: 10.1155/2011/834139. DOI
Avitabile C., D’Andrea L.D., Romanelli A. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci. Rep. 2014;4:4293. doi: 10.1038/srep04293. PubMed DOI PMC
Ebenhan T., Gheysens O., Kruger H.G., Zeevaart J.R., Sathekge M.M. Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. Biomed. Res. Int. 2014;2014:867381. doi: 10.1155/2014/867381. PubMed DOI PMC
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics
A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria