A Novel Biocompatible Titanium-Gadolinium Quantum Dot as a Bacterial Detecting Agent with High Antibacterial Activity

. 2020 Apr 17 ; 10 (4) : . [epub] 20200417

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32316666

Grantová podpora
CEITEC 2020 (LQ1601) Central European Institute of Technology
(No. CZ.02.1.01/0.0/0.0/16_025/0007314) EFRR project "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"

: In this study, the titanium-gadolinium quantum dots (TGQDs) were novel, first of its type to be synthesized, and fully characterized to date. Multiple physical characterization includes scanning electron microscopy (SEM), scanning electrochemical microscope (SCEM), x-ray fluorescence, spectrophotometry, and dynamic light scattering were carried out. The obtained results confirmed appropriate size and shape distributions in addition to processing optical features with high quantum yield. The synthesized TGQD was used as a fluorescent dye for bacterial detection and imaging by fluorescent microscopy and spectrophotometry, where TGQD stained only bacterial cells, but not human cells. The significant antibacterial activities of the TGQDs were found against a highly pathogenic bacterium (Staphylococcus aureus) and its antibiotic resistant strains (vancomycin and methicillin resistant Staphylococcus aureus) using growth curve analysis and determination of minimum inhibitory concentration (MIC) analysis. Live/dead cell imaging assay using phase-contrast microscope was performed for further confirmation of the antibacterial activity. Cell wall disruption and release of cell content was observed to be the prime mode of action with the reduction of cellular oxygen demand (OD).

Zobrazit více v PubMed

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI

Foster T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017;41:430–449. doi: 10.1093/femsre/fux007. PubMed DOI

Barker A.K., Brown K., Ahsan M., Sengupta S., Safdar N. Social determinants of antibiotic misuse: A qualitative study of community members in Haryana, India. BMC Public Health. 2017;17:333. doi: 10.1186/s12889-017-4261-4. PubMed DOI PMC

Antibiotics: Are You Misusing Them? [(accessed on 16 April 2020)]; Available online: https://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/antibiotics/art-20045720.

NHS U. Side Effects of Antibiotics. [(accessed on 16 April 2020)]; Available online: https://www.nhs.uk/conditions/antibiotics/side-effects/

Westphal J.F., Vetter D., Brogard J.M. Hepatic side-effects of antibiotics. J. Antimicrob. Chemother. 1994;33:387–401. doi: 10.1093/jac/33.3.387. PubMed DOI

Dang C.N., Prasad Y.D.M., Boulton A.J.M., Jude E.B. Methicillin-resistant Staphylococcus aureus in the diabetic foot clinic: A worsening problem. Diabet. Med. 2003;20:159–161. doi: 10.1046/j.1464-5491.2003.00860.x. PubMed DOI

Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria-“A Battle of the Titans”. Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441. PubMed DOI PMC

Habiba K., Bracho-Rincon D.P., Gonzalez-Feliciano J.A., Villalobos-Santos J.C., Makarov V.I., Ortiz D., Avalos J.A., Gonzalez C.I., Weiner B.R., Morell G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl. Mater. Today. 2015;1:80–87. doi: 10.1016/j.apmt.2015.10.001. DOI

Alanis A.J. Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Arch. Med. Res. 2005;36:697–705. doi: 10.1016/j.arcmed.2005.06.009. PubMed DOI

Sang Y., Blecha F. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 2008;9:227–235. doi: 10.1017/S1466252308001497. PubMed DOI

Edwards-Jones V. Chapter 1—Alternative Antimicrobial Approaches to Fighting Multidrug-Resistant Infections. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 1–9. DOI

Kuete V. Chapter 3—Bioactivity of Plant Constituents against Vancomycin-Resistant Enterococci. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 23–30. DOI

Ramírez Rueda R.Y. Chapter 2—Natural Plant Products Used against Methicillin-Resistant Staphylococcus aureus. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 11–22. DOI

Barros C.H.N., Fulaz S., Stanisic D., Tasic L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB) Antibiotics. 2018;7:69. doi: 10.3390/antibiotics7030069. PubMed DOI PMC

Pal I., Bhattacharyya D., Kar R.K., Zarena D., Bhunia A., Atreya H.S. A Peptide-Nanoparticle System with Improved Efficacy against Multidrug Resistant Bacteria. Sci. Rep. 2019;9:4485. doi: 10.1038/s41598-019-41005-7. PubMed DOI PMC

Hemeg H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Sur V.P., Kominkova M., Buchtova Z., Dolezelikova K., Zitka O., Moulick A. CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing. Nanomaterials. 2019;9:1463. doi: 10.3390/nano9101463. PubMed DOI PMC

Thurn K.T., Brown E., Wu A., Vogt S., Lai B., Maser J., Paunesku T., Woloschak G.E. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2007;2:430–441. doi: 10.1007/s11671-007-9081-5. PubMed DOI PMC

Bahadar H., Maqbool F., Niaz K., Abdollahi M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016;20:1–11. doi: 10.7508/ibj.2016.01.001. PubMed DOI PMC

Crisponi G., Nurchi V.M., Lachowicz J.I., Peana M., Medici S., Zoroddu M.A. Chapter 18—Toxicity of Nanoparticles: Etiology and Mechanisms. In: Grumezescu A.M., editor. Antimicrobial Nanoarchitectonics. Elsevier; Amsterdam, The Netherlands: 2017. pp. 511–546. DOI

Stocks S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A. 2004;61:189–195. doi: 10.1002/cyto.a.20069. PubMed DOI

Datta S., Sherman J.M., Bravard M.A., Valencia T., Gilman R.H., Evans C.A. Clinical Evaluation of Tuberculosis Viability Microscopy for Assessing Treatment Response. Clin. Infect. Dis. 2014;60:1186–1195. doi: 10.1093/cid/ciu1153. PubMed DOI PMC

Kanade S., Nataraj G., Ubale M., Mehta P. Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on antituberculosis treatment. Int. J. Mycobacteriol. 2016;5:294–298. doi: 10.1016/j.ijmyco.2016.06.003. PubMed DOI

Azzopardi E.A., Ferguson E.L., Thomas D.W. The enhanced permeability retention effect: A new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 2012;68:257–274. doi: 10.1093/jac/dks379. PubMed DOI

Anderson D., Mj S. Nanotechnology: The Risks and Benefits for Medical Diagnosis and Treatment. J. Nanomed. Nanotechnol. 2016;7 doi: 10.4172/2157-7439.1000e143. DOI

Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M.A., Buchtelova H., Podgajny R., Hynek D., Kopel P., et al. Real-Time Visualization of Cell Membrane Damage Using Gadolinium–Schiff Base Complex-Doped Quantum Dots. ACS Appl. Mater. Interfaces. 2018;10:35859–35868. doi: 10.1021/acsami.8b15868. PubMed DOI

Ristic B.Z., Milenkovic M.M., Dakic I.R., Todorovic-Markovic B.M., Milosavljevic M.S., Budimir M.D., Paunovic V.G., Dramicanin M.D., Markovic Z.M., Trajkovic V.S. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35:4428–4435. doi: 10.1016/j.biomaterials.2014.02.014. PubMed DOI

Li H., Huang J., Song Y., Zhang M., Wang H., Lu F., Huang H., Liu Y., Dai X., Gu Z., et al. Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces. 2018;10:26936–26946. doi: 10.1021/acsami.8b08832. PubMed DOI

Garcia I.M., Leitune V.C.B., Visioli F., Samuel S.M.W., Collares F.M. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J. Dent. 2018;73:57–60. doi: 10.1016/j.jdent.2018.04.003. PubMed DOI

Meikhail M.S., Abdelghany A.M., Awad W.M. Role of CdSe quantum dots in the structure and antibacterial activity of chitosan/poly ɛ-caprolactone thin films. Egypt. J. Basic Appl. Sci. 2018;5:138–144. doi: 10.1016/j.ejbas.2018.05.003. DOI

Belletti D., Riva G., Luppi M., Tosi G., Forni F., Vandelli M.A., Ruozi B., Pederzoli F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur. J. Pharm. Sci. 2017;107:230–239. doi: 10.1016/j.ejps.2017.07.020. PubMed DOI

Liu Z., Lin Q., Huang Q., Liu H., Bao C., Zhang W., Zhong X., Zhu L. Semiconductor quantum dots photosensitizing release of anticancer drug. Chem. Commun. 2011;47:1482–1484. doi: 10.1039/C0CC04676K. PubMed DOI

Han C., Lalley J., Namboodiri D., Cromer K., Nadagouda M.N. Titanium dioxide-based antibacterial surfaces for water treatment. Curr. Opin. Chem. Eng. 2016;11:46–51. doi: 10.1016/j.coche.2015.11.007. DOI

Haugen H., Lyngstadaas S. Wound Healing Biomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Antibacterial effects of titanium dioxide in wounds; pp. 439–450.

Kubacka A., Diez M.S., Rojo D., Bargiela R., Ciordia S., Zapico I., Albar J.P., Barbas C., Dos Santos V.A.M., Fernández-García M. Understanding the antimicrobial mechanism of TiO 2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014;4:4134. doi: 10.1038/srep04134. PubMed DOI PMC

Besinis A., De Peralta T., Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8:1–16. doi: 10.3109/17435390.2012.742935. PubMed DOI PMC

Karthikeyan G., Mohanraj K., Elango K.P., Girishkumar K. Synthesis, spectroscopic characterization and antibacterial activity of lanthanide–tetracycline complexes. Transit. Met. Chem. 2004;29:86–90. doi: 10.1023/B:TMCH.0000014490.54611.5a. DOI

Peng P., Jiang W.-P., Li S.-M., Chen C.-Z., Liu G.-H. Synthesis, characterization and antibacterial activity of complex for gadolinium iodide with thiourea. Appl. Chem. Ind. 2011;1:100–103.

Pradhan N., Peng X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:  Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc. 2007;129:3339–3347. doi: 10.1021/ja068360v. PubMed DOI

Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI

Jelinkova P., Koudelkova Z., Milosavljevic V., Horky P., Kopel P., Adam V. Utilization of Selenium Nanoparticles with Schiff Base Chitosan as Antibacterial Agents. [(accessed on 16 April 2020)];MendelNet. 2016 :989–993. Available online: https://pdfs.semanticscholar.org/6ba5/800ec37f37ab26508fefcafd3ac3056f3201.pdf.

Herathge N.D.S., George J.T., Rowley D.A. Science and Technology Against Microbial Pathogens. World Scientific; Singapore: 2011. Differential antimicrobial activities of Human Beta-Defensins against Methicillin Resistant (MRSA) and Methicillin sensitive (MSSA) Staphylococcus aureus; pp. 9–12. DOI

Mazumdar A., Haddad Y., Milosavljevic V., Michalkova H., Guran R., Bhowmick S., Moulick A. Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria. Nanomaterials. 2020;10:325. doi: 10.3390/nano10020325. PubMed DOI PMC

Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC

Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Merlos Rodrigo M.A., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI

Richter S.G., Elli D., Kim H.K., Hendrickx A.P.A., Sorg J.A., Schneewind O., Missiakas D. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc. Natl. Acad. Sci. USA. 2013;110:3531–3536. doi: 10.1073/pnas.1217337110. PubMed DOI PMC

Vukomanovic M., Torrents E. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles. J. Nanobiotechnol. 2019;17:21. doi: 10.1186/s12951-019-0459-1. PubMed DOI PMC

Stevenson K., McVey A.F., Clark I.B.N., Swain P.S., Pilizota T. General calibration of microbial growth in microplate readers. Sci. Rep. 2016;6:38828. doi: 10.1038/srep38828. PubMed DOI PMC

van Sorge N.M., Beasley F.C., Gusarov I., Gonzalez D.J., von Köckritz-Blickwede M., Anik S., Borkowski A.W., Dorrestein P.C., Nudler E., Nizet V. Methicillin-resistant Staphylococcus aureus Bacterial Nitric-oxide Synthase Affects Antibiotic Sensitivity and Skin Abscess Development. J. Biol. Chem. 2013;288:6417–6426. doi: 10.1074/jbc.M112.448738. PubMed DOI PMC

Schumacher A., Vranken T., Malhotra A., Arts J.J.C., Habibovic P. In vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:187–208. doi: 10.1007/s10096-017-3089-2. PubMed DOI PMC

Stasiak-Różańska L., Błażejak S., Gientka I. Effect of glycerol and dihydroxyacetone concentrations in the culture medium on the growth of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur. Food Res. Technol. 2014;239:453–461. doi: 10.1007/s00217-014-2238-4. DOI

Hogenkamp A., Herías M.V., Tooten P.C.J., Veldhuizen E.J.A., Haagsman H.P. Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria. Mol. Immunol. 2007;44:3517–3527. doi: 10.1016/j.molimm.2007.03.013. PubMed DOI

Li R.C., Nix D.E., Schentag J.J. New turbidimetric assay for quantitation of viable bacterial densities. Antimicrob. Agents Chemother. 1993;37:371–374. doi: 10.1128/AAC.37.2.371. PubMed DOI PMC

Sacar M., Sacar S., Cevahir N., Onem G., Teke Z., Asan A., Turgut H., Adali F., Kaleli I., Susam I., et al. Comparison of antimicrobial agents as therapy for experimental endocarditis: Caused by methicillin-resistant Staphylococcus aureus. Tex Heart Inst. J. 2010;37:400–404. PubMed PMC

Popova M., Martin C., Morgavi D.P. Improved protocol for high-quality Co-extraction of DNA and RNA from rumen digesta. Folia Microbiol. 2010;55:368–372. doi: 10.1007/s12223-010-0060-3. PubMed DOI

Welsh S., Peakman T., Sheard S., Almond R. Comparison of DNA quantification methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC Genom. 2017;18:26. doi: 10.1186/s12864-016-3391-x. PubMed DOI PMC

eLS. Wiley; New York, NY, USA: 2003. Quantification of DNA and RNA: A Spectrophotometric Method. DOI

Jorgez C.J., Dang D.D., Simpson J.L., Lewis D.E., Bischoff F.Z. Quantity versus quality: Optimal methods for cell-free DNA isolation from plasma of pregnant women. Genet. Med. 2006;8:615–619. doi: 10.1097/01.gim.0000241904.32039.6f. PubMed DOI

Wilfinger W.W., Mackey K., Chomczynski P. Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTechniques. 1997;22:474–481. doi: 10.2144/97223st01. PubMed DOI

Heger Z., Merlos Rodrigo M.A., Michalek P., Polanska H., Masarik M., Vit V., Plevova M., Pacik D., Eckschlager T., Stiborova M., et al. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS ONE. 2016;11:e0165830. doi: 10.1371/journal.pone.0165830. PubMed DOI PMC

Trivedi M.K., Branton A., Trivedi D., Nayak G., Bairwa K., Jana S. Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J. Chromatogr. Sep. Tech. 2015;6:5. doi: 10.4172/2157-7064.1000282. DOI

Perrin F.X., Nguyen V., Vernet J.L. FT-IR Spectroscopy of Acid-Modified Titanium Alkoxides: Investigations on the Nature of Carboxylate Coordination and Degree of Complexation. J. Sol-Gel Sci. Technol. 2003;28:205–215. doi: 10.1023/A:1026081100860. DOI

Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI

Diana P., Sigifredo O., Jaime R., María Claudia V., Julieta P., Orville H., Jinnethe R., César A.A. First Characterization of a Cluster of VanA-Type Glycopeptide-Resistant Enterococcus faecium Colombia. Emerg. Infect. Dis. J. 2002;8:961. doi: 10.3201/eid0809.010435. PubMed DOI PMC

Qureshi N.K., Yin S., Boyle-Vavra S. The role of the Staphylococcal VraTSR regulatory system on vancomycin resistance and vanA operon expression in vancomycin-resistant Staphylococcus aureus. PLoS ONE. 2014;9:e85873. doi: 10.1371/journal.pone.0085873. PubMed DOI PMC

Liu B., Cheng W., Rotenberg S.A., Mirkin M.V. Scanning electrochemical microscopy of living cells: Part 2. Imaging redox and acid/basic reactivities. J. Electroanal. Chem. 2001;500:590–597. doi: 10.1016/S0022-0728(00)00436-8. DOI

Bard A.J., Mirkin M.V. Scanning Electrochemical Microscopy. CRC Press; Florida, FL, USA: 2012.

Kim S.R., Park M.J., Lee M.K., Sung S.H., Park E.J., Kim J., Kim S.Y., Oh T.H., Markelonis G.J., Kim Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 2002;32:596–604. doi: 10.1016/S0891-5849(02)00751-7. PubMed DOI

Shoemaker M., Cohen I., Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004;93:381–384. doi: 10.1016/j.jep.2004.04.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...