A Novel Biocompatible Titanium-Gadolinium Quantum Dot as a Bacterial Detecting Agent with High Antibacterial Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CEITEC 2020 (LQ1601)
Central European Institute of Technology
(No. CZ.02.1.01/0.0/0.0/16_025/0007314)
EFRR project "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"
PubMed
32316666
PubMed Central
PMC7221622
DOI
10.3390/nano10040778
PII: nano10040778
Knihovny.cz E-zdroje
- Klíčová slova
- SECM, antibacterial activity, bacterial detection, bacterial resistance, titanium–gadolinium quantum dots,
- Publikační typ
- časopisecké články MeSH
: In this study, the titanium-gadolinium quantum dots (TGQDs) were novel, first of its type to be synthesized, and fully characterized to date. Multiple physical characterization includes scanning electron microscopy (SEM), scanning electrochemical microscope (SCEM), x-ray fluorescence, spectrophotometry, and dynamic light scattering were carried out. The obtained results confirmed appropriate size and shape distributions in addition to processing optical features with high quantum yield. The synthesized TGQD was used as a fluorescent dye for bacterial detection and imaging by fluorescent microscopy and spectrophotometry, where TGQD stained only bacterial cells, but not human cells. The significant antibacterial activities of the TGQDs were found against a highly pathogenic bacterium (Staphylococcus aureus) and its antibiotic resistant strains (vancomycin and methicillin resistant Staphylococcus aureus) using growth curve analysis and determination of minimum inhibitory concentration (MIC) analysis. Live/dead cell imaging assay using phase-contrast microscope was performed for further confirmation of the antibacterial activity. Cell wall disruption and release of cell content was observed to be the prime mode of action with the reduction of cellular oxygen demand (OD).
Zobrazit více v PubMed
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI
Foster T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017;41:430–449. doi: 10.1093/femsre/fux007. PubMed DOI
Barker A.K., Brown K., Ahsan M., Sengupta S., Safdar N. Social determinants of antibiotic misuse: A qualitative study of community members in Haryana, India. BMC Public Health. 2017;17:333. doi: 10.1186/s12889-017-4261-4. PubMed DOI PMC
Antibiotics: Are You Misusing Them? [(accessed on 16 April 2020)]; Available online: https://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/antibiotics/art-20045720.
NHS U. Side Effects of Antibiotics. [(accessed on 16 April 2020)]; Available online: https://www.nhs.uk/conditions/antibiotics/side-effects/
Westphal J.F., Vetter D., Brogard J.M. Hepatic side-effects of antibiotics. J. Antimicrob. Chemother. 1994;33:387–401. doi: 10.1093/jac/33.3.387. PubMed DOI
Dang C.N., Prasad Y.D.M., Boulton A.J.M., Jude E.B. Methicillin-resistant Staphylococcus aureus in the diabetic foot clinic: A worsening problem. Diabet. Med. 2003;20:159–161. doi: 10.1046/j.1464-5491.2003.00860.x. PubMed DOI
Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria-“A Battle of the Titans”. Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441. PubMed DOI PMC
Habiba K., Bracho-Rincon D.P., Gonzalez-Feliciano J.A., Villalobos-Santos J.C., Makarov V.I., Ortiz D., Avalos J.A., Gonzalez C.I., Weiner B.R., Morell G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl. Mater. Today. 2015;1:80–87. doi: 10.1016/j.apmt.2015.10.001. DOI
Alanis A.J. Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Arch. Med. Res. 2005;36:697–705. doi: 10.1016/j.arcmed.2005.06.009. PubMed DOI
Sang Y., Blecha F. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 2008;9:227–235. doi: 10.1017/S1466252308001497. PubMed DOI
Edwards-Jones V. Chapter 1—Alternative Antimicrobial Approaches to Fighting Multidrug-Resistant Infections. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 1–9. DOI
Kuete V. Chapter 3—Bioactivity of Plant Constituents against Vancomycin-Resistant Enterococci. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 23–30. DOI
Ramírez Rueda R.Y. Chapter 2—Natural Plant Products Used against Methicillin-Resistant Staphylococcus aureus. In: Rai M.K., Kon K.V., editors. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; San Diego, CA, USA: 2013. pp. 11–22. DOI
Barros C.H.N., Fulaz S., Stanisic D., Tasic L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB) Antibiotics. 2018;7:69. doi: 10.3390/antibiotics7030069. PubMed DOI PMC
Pal I., Bhattacharyya D., Kar R.K., Zarena D., Bhunia A., Atreya H.S. A Peptide-Nanoparticle System with Improved Efficacy against Multidrug Resistant Bacteria. Sci. Rep. 2019;9:4485. doi: 10.1038/s41598-019-41005-7. PubMed DOI PMC
Hemeg H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Sur V.P., Kominkova M., Buchtova Z., Dolezelikova K., Zitka O., Moulick A. CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing. Nanomaterials. 2019;9:1463. doi: 10.3390/nano9101463. PubMed DOI PMC
Thurn K.T., Brown E., Wu A., Vogt S., Lai B., Maser J., Paunesku T., Woloschak G.E. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2007;2:430–441. doi: 10.1007/s11671-007-9081-5. PubMed DOI PMC
Bahadar H., Maqbool F., Niaz K., Abdollahi M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016;20:1–11. doi: 10.7508/ibj.2016.01.001. PubMed DOI PMC
Crisponi G., Nurchi V.M., Lachowicz J.I., Peana M., Medici S., Zoroddu M.A. Chapter 18—Toxicity of Nanoparticles: Etiology and Mechanisms. In: Grumezescu A.M., editor. Antimicrobial Nanoarchitectonics. Elsevier; Amsterdam, The Netherlands: 2017. pp. 511–546. DOI
Stocks S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A. 2004;61:189–195. doi: 10.1002/cyto.a.20069. PubMed DOI
Datta S., Sherman J.M., Bravard M.A., Valencia T., Gilman R.H., Evans C.A. Clinical Evaluation of Tuberculosis Viability Microscopy for Assessing Treatment Response. Clin. Infect. Dis. 2014;60:1186–1195. doi: 10.1093/cid/ciu1153. PubMed DOI PMC
Kanade S., Nataraj G., Ubale M., Mehta P. Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on antituberculosis treatment. Int. J. Mycobacteriol. 2016;5:294–298. doi: 10.1016/j.ijmyco.2016.06.003. PubMed DOI
Azzopardi E.A., Ferguson E.L., Thomas D.W. The enhanced permeability retention effect: A new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 2012;68:257–274. doi: 10.1093/jac/dks379. PubMed DOI
Anderson D., Mj S. Nanotechnology: The Risks and Benefits for Medical Diagnosis and Treatment. J. Nanomed. Nanotechnol. 2016;7 doi: 10.4172/2157-7439.1000e143. DOI
Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M.A., Buchtelova H., Podgajny R., Hynek D., Kopel P., et al. Real-Time Visualization of Cell Membrane Damage Using Gadolinium–Schiff Base Complex-Doped Quantum Dots. ACS Appl. Mater. Interfaces. 2018;10:35859–35868. doi: 10.1021/acsami.8b15868. PubMed DOI
Ristic B.Z., Milenkovic M.M., Dakic I.R., Todorovic-Markovic B.M., Milosavljevic M.S., Budimir M.D., Paunovic V.G., Dramicanin M.D., Markovic Z.M., Trajkovic V.S. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35:4428–4435. doi: 10.1016/j.biomaterials.2014.02.014. PubMed DOI
Li H., Huang J., Song Y., Zhang M., Wang H., Lu F., Huang H., Liu Y., Dai X., Gu Z., et al. Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces. 2018;10:26936–26946. doi: 10.1021/acsami.8b08832. PubMed DOI
Garcia I.M., Leitune V.C.B., Visioli F., Samuel S.M.W., Collares F.M. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J. Dent. 2018;73:57–60. doi: 10.1016/j.jdent.2018.04.003. PubMed DOI
Meikhail M.S., Abdelghany A.M., Awad W.M. Role of CdSe quantum dots in the structure and antibacterial activity of chitosan/poly ɛ-caprolactone thin films. Egypt. J. Basic Appl. Sci. 2018;5:138–144. doi: 10.1016/j.ejbas.2018.05.003. DOI
Belletti D., Riva G., Luppi M., Tosi G., Forni F., Vandelli M.A., Ruozi B., Pederzoli F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur. J. Pharm. Sci. 2017;107:230–239. doi: 10.1016/j.ejps.2017.07.020. PubMed DOI
Liu Z., Lin Q., Huang Q., Liu H., Bao C., Zhang W., Zhong X., Zhu L. Semiconductor quantum dots photosensitizing release of anticancer drug. Chem. Commun. 2011;47:1482–1484. doi: 10.1039/C0CC04676K. PubMed DOI
Han C., Lalley J., Namboodiri D., Cromer K., Nadagouda M.N. Titanium dioxide-based antibacterial surfaces for water treatment. Curr. Opin. Chem. Eng. 2016;11:46–51. doi: 10.1016/j.coche.2015.11.007. DOI
Haugen H., Lyngstadaas S. Wound Healing Biomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Antibacterial effects of titanium dioxide in wounds; pp. 439–450.
Kubacka A., Diez M.S., Rojo D., Bargiela R., Ciordia S., Zapico I., Albar J.P., Barbas C., Dos Santos V.A.M., Fernández-García M. Understanding the antimicrobial mechanism of TiO 2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014;4:4134. doi: 10.1038/srep04134. PubMed DOI PMC
Besinis A., De Peralta T., Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8:1–16. doi: 10.3109/17435390.2012.742935. PubMed DOI PMC
Karthikeyan G., Mohanraj K., Elango K.P., Girishkumar K. Synthesis, spectroscopic characterization and antibacterial activity of lanthanide–tetracycline complexes. Transit. Met. Chem. 2004;29:86–90. doi: 10.1023/B:TMCH.0000014490.54611.5a. DOI
Peng P., Jiang W.-P., Li S.-M., Chen C.-Z., Liu G.-H. Synthesis, characterization and antibacterial activity of complex for gadolinium iodide with thiourea. Appl. Chem. Ind. 2011;1:100–103.
Pradhan N., Peng X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc. 2007;129:3339–3347. doi: 10.1021/ja068360v. PubMed DOI
Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI
Jelinkova P., Koudelkova Z., Milosavljevic V., Horky P., Kopel P., Adam V. Utilization of Selenium Nanoparticles with Schiff Base Chitosan as Antibacterial Agents. [(accessed on 16 April 2020)];MendelNet. 2016 :989–993. Available online: https://pdfs.semanticscholar.org/6ba5/800ec37f37ab26508fefcafd3ac3056f3201.pdf.
Herathge N.D.S., George J.T., Rowley D.A. Science and Technology Against Microbial Pathogens. World Scientific; Singapore: 2011. Differential antimicrobial activities of Human Beta-Defensins against Methicillin Resistant (MRSA) and Methicillin sensitive (MSSA) Staphylococcus aureus; pp. 9–12. DOI
Mazumdar A., Haddad Y., Milosavljevic V., Michalkova H., Guran R., Bhowmick S., Moulick A. Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria. Nanomaterials. 2020;10:325. doi: 10.3390/nano10020325. PubMed DOI PMC
Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC
Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Merlos Rodrigo M.A., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI
Richter S.G., Elli D., Kim H.K., Hendrickx A.P.A., Sorg J.A., Schneewind O., Missiakas D. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc. Natl. Acad. Sci. USA. 2013;110:3531–3536. doi: 10.1073/pnas.1217337110. PubMed DOI PMC
Vukomanovic M., Torrents E. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles. J. Nanobiotechnol. 2019;17:21. doi: 10.1186/s12951-019-0459-1. PubMed DOI PMC
Stevenson K., McVey A.F., Clark I.B.N., Swain P.S., Pilizota T. General calibration of microbial growth in microplate readers. Sci. Rep. 2016;6:38828. doi: 10.1038/srep38828. PubMed DOI PMC
van Sorge N.M., Beasley F.C., Gusarov I., Gonzalez D.J., von Köckritz-Blickwede M., Anik S., Borkowski A.W., Dorrestein P.C., Nudler E., Nizet V. Methicillin-resistant Staphylococcus aureus Bacterial Nitric-oxide Synthase Affects Antibiotic Sensitivity and Skin Abscess Development. J. Biol. Chem. 2013;288:6417–6426. doi: 10.1074/jbc.M112.448738. PubMed DOI PMC
Schumacher A., Vranken T., Malhotra A., Arts J.J.C., Habibovic P. In vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:187–208. doi: 10.1007/s10096-017-3089-2. PubMed DOI PMC
Stasiak-Różańska L., Błażejak S., Gientka I. Effect of glycerol and dihydroxyacetone concentrations in the culture medium on the growth of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur. Food Res. Technol. 2014;239:453–461. doi: 10.1007/s00217-014-2238-4. DOI
Hogenkamp A., Herías M.V., Tooten P.C.J., Veldhuizen E.J.A., Haagsman H.P. Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria. Mol. Immunol. 2007;44:3517–3527. doi: 10.1016/j.molimm.2007.03.013. PubMed DOI
Li R.C., Nix D.E., Schentag J.J. New turbidimetric assay for quantitation of viable bacterial densities. Antimicrob. Agents Chemother. 1993;37:371–374. doi: 10.1128/AAC.37.2.371. PubMed DOI PMC
Sacar M., Sacar S., Cevahir N., Onem G., Teke Z., Asan A., Turgut H., Adali F., Kaleli I., Susam I., et al. Comparison of antimicrobial agents as therapy for experimental endocarditis: Caused by methicillin-resistant Staphylococcus aureus. Tex Heart Inst. J. 2010;37:400–404. PubMed PMC
Popova M., Martin C., Morgavi D.P. Improved protocol for high-quality Co-extraction of DNA and RNA from rumen digesta. Folia Microbiol. 2010;55:368–372. doi: 10.1007/s12223-010-0060-3. PubMed DOI
Welsh S., Peakman T., Sheard S., Almond R. Comparison of DNA quantification methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC Genom. 2017;18:26. doi: 10.1186/s12864-016-3391-x. PubMed DOI PMC
eLS. Wiley; New York, NY, USA: 2003. Quantification of DNA and RNA: A Spectrophotometric Method. DOI
Jorgez C.J., Dang D.D., Simpson J.L., Lewis D.E., Bischoff F.Z. Quantity versus quality: Optimal methods for cell-free DNA isolation from plasma of pregnant women. Genet. Med. 2006;8:615–619. doi: 10.1097/01.gim.0000241904.32039.6f. PubMed DOI
Wilfinger W.W., Mackey K., Chomczynski P. Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTechniques. 1997;22:474–481. doi: 10.2144/97223st01. PubMed DOI
Heger Z., Merlos Rodrigo M.A., Michalek P., Polanska H., Masarik M., Vit V., Plevova M., Pacik D., Eckschlager T., Stiborova M., et al. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS ONE. 2016;11:e0165830. doi: 10.1371/journal.pone.0165830. PubMed DOI PMC
Trivedi M.K., Branton A., Trivedi D., Nayak G., Bairwa K., Jana S. Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J. Chromatogr. Sep. Tech. 2015;6:5. doi: 10.4172/2157-7064.1000282. DOI
Perrin F.X., Nguyen V., Vernet J.L. FT-IR Spectroscopy of Acid-Modified Titanium Alkoxides: Investigations on the Nature of Carboxylate Coordination and Degree of Complexation. J. Sol-Gel Sci. Technol. 2003;28:205–215. doi: 10.1023/A:1026081100860. DOI
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Diana P., Sigifredo O., Jaime R., María Claudia V., Julieta P., Orville H., Jinnethe R., César A.A. First Characterization of a Cluster of VanA-Type Glycopeptide-Resistant Enterococcus faecium Colombia. Emerg. Infect. Dis. J. 2002;8:961. doi: 10.3201/eid0809.010435. PubMed DOI PMC
Qureshi N.K., Yin S., Boyle-Vavra S. The role of the Staphylococcal VraTSR regulatory system on vancomycin resistance and vanA operon expression in vancomycin-resistant Staphylococcus aureus. PLoS ONE. 2014;9:e85873. doi: 10.1371/journal.pone.0085873. PubMed DOI PMC
Liu B., Cheng W., Rotenberg S.A., Mirkin M.V. Scanning electrochemical microscopy of living cells: Part 2. Imaging redox and acid/basic reactivities. J. Electroanal. Chem. 2001;500:590–597. doi: 10.1016/S0022-0728(00)00436-8. DOI
Bard A.J., Mirkin M.V. Scanning Electrochemical Microscopy. CRC Press; Florida, FL, USA: 2012.
Kim S.R., Park M.J., Lee M.K., Sung S.H., Park E.J., Kim J., Kim S.Y., Oh T.H., Markelonis G.J., Kim Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 2002;32:596–604. doi: 10.1016/S0891-5849(02)00751-7. PubMed DOI
Shoemaker M., Cohen I., Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004;93:381–384. doi: 10.1016/j.jep.2004.04.011. PubMed DOI
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics