Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30349337
PubMed Central
PMC6190637
DOI
10.2147/idr.s160975
PII: idr-11-1807
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, antibacterial, antibiotic resistance, peptide, vancomycin,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Increase in vancomycin (Van)-resistant bacterial strains including vancomycin-resistant Staphylococcus aureus (VRSA) and lack of new effective antibiotics have become a formidable health problem. MATERIALS AND METHODS: We designed a new conjugate composed of Van and a peptide Hecate (Hec; Van/Hec), and its potential antimicrobial activity was evaluated. RESULTS: Results from disk diffusion test, time-kill assay, determination of minimum inhibitory concentration (MIC), microscopy, and comet assay showed strong antimicrobial effects of Van/Hec against wild-type, methicillin-resistant Staphylococcus aureus (MRSA) and VRSA. Microscopy revealed that the exposure to Van/Hec results in disruption of bacterial cell integrity in all tested strains, which was not observed in case of Van or Hec alone. CONCLUSION: Overall, we showed that the preparation of conjugates from antibiotics and biologically active peptides could help us to overcome the limitation of the use of antibiotic in the treatment of infections caused by multidrug-resistant bacteria.
Central European Institute of Technology Brno University of Technology Purkynova Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno Zemedelska Brno Czech Republic
Zobrazit více v PubMed
Tan RM, Liu JL, Li ML, Huang J, Sun JY, Qu HP. Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university-affiliated hospital in Shanghai. J Microbiol Immunol Infect. 2014;47(2):87–94. PubMed
McNeece G, Naughton V, Woodward MJ, Dooley JSG, Naughton PJ. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int J Food Microbiol. 2014;179:24–32. PubMed
Juknius T, Tamulevicius T, Grazuleviciute I, Klimiene I, Matusevicius AP, Tamulevicius S. In-situ measurements of bacteria resistance to antimicrobial agents employing leaky mode sub-wavelength diffraction grating. Sens Actuator B Chem. 2014;204:799–806.
Wang RX, Wang AL, Wang JY. Antibiotic resistance monitoring in heterotrophic bacteria from anthropogenic-polluted seawater and the intestines of oyster Crassostrea hongkongensis. Ecotoxicol Environ Saf. 2014;109:27–31. PubMed
Wang HH, Schaffner DW. Antibiotic resistance: how much do we know and where do we go from here? Appl Environ Microbiol. 2011;77(20):7093–7095. PubMed PMC
Cui LZ, Iwamoto A, Lian JQ, et al. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(2):428–438. PubMed PMC
Chang S, Sievert DM, Hageman JC, et al. Vancomycin-Resistant Staphylococcus aureus Investigative Team Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348(14):1342–1347. PubMed
Chung DR, Baek JY, Kim HA, et al. First report of vancomycin-intermediate resistance in sequence type 72 community genotype methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2012;50(7):2513–2514. PubMed PMC
Weigel LM, Clewell DB, Gill SR, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302(5650):1569–1571. PubMed
Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(suppl 1):S25–S34. PubMed
Alexander EL, Gardete S, Bar HY, Wells MT, Tomasz A, Rhee KY. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations. PLoS One. 2014;9(5):1–9. PubMed PMC
Zhu WL, Lan HL, Park IS, et al. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem Biophys Res Commun. 2006;349(2):769–774. PubMed
Groh T, Hrabeta J, Khalil MA, Doktorova H, Eckschlager T, Stiborova M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int J Oncol. 2015;47(1):343–352. PubMed
Piecyk K, Jankowska-Anyszka M. Chemical conjugation of an mRNA cap analogue with a cell-penetrating peptide as a potential membrane permeable translation inhibitor. Tetrahedron Lett. 2014;55(3):606–609.
Montenegro J, Matile S. Anionic activators for differential sensing with cell-penetrating peptides. Chem Asian J. 2011;6(2):681–689. PubMed
Sanches PRS, Carneiro BM, Batista MN, et al. A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids. 2015;47(7):1433–1443. PubMed
Rivero-Muller A, Vuorenoja S, Tuominen M, et al. Use of hecate-chorionic gonadotropin beta conjugate in therapy of lutenizing hormone receptor expressing gonadal somatic cell tumors. Mol Cell Endocrinol. 2007;269(1–2):17–25. PubMed
Vicente EF, Basso LGM, Cespedes GF, et al. Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile(21))-Ha peptide from Hypsiboas albopunctatus. PLoS One. 2013;8(4):1–12. PubMed PMC
Chudobova D, Cihalova K, Dostalova S, et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014;351(2):195–201. PubMed
Wright SJL. A simple agar plate method, using micro-algae, for herbicide bio-assay or detection. Bull Environ Contam Toxicol. 1975;14(1):65–70. PubMed
Valgas C, de Souza SM, Smania EFA, Smania A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369–380.
Wang HL, Hesseltine CW, Ellis JJ. Antibacterial activity produced by molds commonly used in oriental food fermentations. Mycologia. 1972;64(1):218–221. PubMed
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79. PubMed PMC
Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398–2402. PubMed PMC
Petersen PJ, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline and comparative agents by time-kill kinetic studies in fresh Mueller-Hinton broth. Diagn Microbiol Infect Dis. 2007;59(3):347–349. PubMed
Pankey GA, Ashcraft DS. In vitro antibacterial activity of tigecycline against resistant Gram-negative bacilli and enterococci by time-kill assay. Diagn Microbiol Infect Dis. 2009;64(3):300–304. PubMed
Petersen PJ, Wang TZ, Dushin RG, Bradford PA. Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob Agents Chemother. 2004;48(3):739–746. PubMed PMC
Heger Z, Rodrigo MAM, Michalek P, et al. Sarcosine up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One. 2016;11(11):1–20. PubMed PMC
Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Micro-biol. 2007;73(10):3283–3290. PubMed PMC
Hiramatsu K, Kayayama Y, Matsuo M, et al. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist. 2014;2(4):213–224. PubMed
Reinhardt A, Neundorf I. Design and application of antimicrobial peptide conjugates. Int J Mol Sci. 2016;17(5):701. PubMed PMC
Leuschner C, Hansel W. Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des. 2004;10(19):2299–2310. PubMed
Yarlagadda V, Konai MM, Manjunath GB, Ghosh C, Haldar J. Tackling vancomycin-resistant bacteria with ‘lipophilic-vancomycin-carbohydrate conjugates’. J Antibiot. 2015;68(5):302–312. PubMed
Suller MTE, Russell AD. Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother. 2000;46(1):11–18. PubMed
Sabath LD, Garner C, Wilcox C, Finland M. Susceptibility of Staphylococcus aureus and Staphylococcus epidermidis to 65 antibiotics. Antimicrob Agents Chemother. 1976;9(6):962–969. PubMed PMC
Ligozzi M, Bernini C, Bonora MG, de Fatima M, Zuliani J, Fontana R. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J Clin Microbiol. 2002;40(5):1681–1686. PubMed PMC
Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(suppl 1):5–16. PubMed
Abb J. In vitro activity of linezolid, quinupristin-dalfopristin, vancomycin, teicoplanin, moxifloxacin and mupirocin against methicillin-resistant Staphylococcus aureus: comparative evaluation by the E test and a broth microdilution method. Diagn Microbiol Infect Dis. 2002;43(4):319–321. PubMed
Goudarzi M, Goudarzi H, Figueiredo AMS, et al. Molecular characterization of methicillin resistant Staphylococcus aureus strains isolated from intensive care units in Iran: ST22-SCCmec IV/t790 emerges as the major clone. PLoS One. 2016;11(5):1–13. PubMed PMC
Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14(4):176–182. PubMed
Hallbrink M, Oehlke J, Papsdorf G, Bienert M. Uptake of cell-penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide concentration. Biochim Biophys Acta. 2004;1667(2):222–228. PubMed
Perichon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(11):4580–4587. PubMed PMC
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics
A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria