New Concept of the Biosynthesis of 4-Alkyl-L-Proline Precursors of Lincomycin, Hormaomycin, and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C-C Bond?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27014201
PubMed Central
PMC4780272
DOI
10.3389/fmicb.2016.00276
Knihovny.cz E-zdroje
- Klíčová slova
- 4-propyl-L-proline, antibiotics, anticancer drug, hormaomycin, lincomycin, natural product biosynthesis, pyrrolobenzodiazepine, secondary metabolism,
- Publikační typ
- časopisecké články MeSH
Structurally different and functionally diverse natural compounds - antitumour agents pyrrolo[1,4]benzodiazepines, bacterial hormone hormaomycin, and lincosamide antibiotic lincomycin - share a common building unit, 4-alkyl-L-proline derivative (APD). APDs arise from L-tyrosine through a special biosynthetic pathway. Its generally accepted scheme, however, did not comply with current state of knowledge. Based on gene inactivation experiments and in vitro functional tests with recombinant enzymes, we designed a new APD biosynthetic scheme for the model of lincomycin biosynthesis. In the new scheme at least one characteristic in each of five final biosynthetic steps has been changed: the order of reactions, assignment of enzymes and/or reaction mechanisms. First, we demonstrate that LmbW methylates a different substrate than previously assumed. Second, we propose a unique reaction mechanism for the next step, in which a putative γ-glutamyltransferase LmbA indirectly cleaves off the oxalyl residue by transient attachment of glutamate to LmbW product. This unprecedented mechanism would represent the first example of the C-C bond cleavage catalyzed by a γ-glutamyltransferase, i.e., an enzyme that appears unsuitable for such activity. Finally, the inactivation experiments show that LmbX is an isomerase indicating that it transforms its substrate into a compound suitable for reduction by LmbY, thereby facilitating its subsequent complete conversion to APD 4-propyl-L-proline. Elucidation of the APD biosynthesis has long time resisted mainly due to the apparent absence of relevant C-C bond cleaving enzymatic activity. Our proposal aims to unblock this situation not only for lincomycin biosynthesis, but generally for all above mentioned groups of bioactive natural products with biotechnological potential.
Zobrazit více v PubMed
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. PubMed PMC
Blankenfeldt W., Kuzin A. P., Skarina T., Korniyenko Y., Tong L., Bayer P., et al. (2004). Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc. Natl. Acad. Sci. U.S.A. 101 16431–16436. 10.1073/pnas.0407371101 PubMed DOI PMC
Brahme N. M., Gonzalez J. E., Rolls J. P., Hessler E. J., Mizsak S., Hurley L. H. (1984). Biosynthesis of the lincomycins. 1. Studies using stable isotopes on the biosynthesis of the propyl- and ethyl-L-hygric acid moieties of lincomycins A and B. J. Am. Chem. Soc. 106 7873–7878. 10.1021/ja00337a039 DOI
Braun S. D., Hofmann J., Wensing A., Ullrich M., Weingart H., Völksch B., et al. (2010). Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93. Appl. Environ. Microbiol. 76 2500–2508. 10.1128/AEM.00666-09 PubMed DOI PMC
Castellano I., Merlino A. (2012). γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell. Mol. Life Sci. 69 3381–3394. 10.1007/s00018-012-0988-3 PubMed DOI PMC
Colabroy K. L., Hackett W. T., Markham A. J., Rosenberg J., Cohen D. E., Jacobson A. (2008). Biochemical characterization of L-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis. Arch. Biochem. Biophys. 479 131–138. 10.1016/j.abb.2008.08.022 PubMed DOI
Colabroy K. L., Smith I. R., Vlahos A. H., Markham A. J., Jakubik M. E. (2014). Defining a kinetic mechanism for L-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. Biochim. Biophys. Acta 1844 607–614. 10.1016/j.bbapap.2013.12.005 PubMed DOI
Connor K. L., Colabroy K. L., Gerratana B. (2011). A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin. Biochemistry 50 8926–8936. 10.1021/bi201148a PubMed DOI PMC
Gauze G. F., Preobrazhenskaia T. P., Ivanitskaia L. P., Sveshnikova M. A. (1969). Production of the antibiotic sibiromycin by the Streptosporangium sibiricum sp. nov. culture. Antibiotiki 14 963–969. PubMed
Gerratana B. (2012). Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med. Res. Rev. 32 254–293. 10.1002/med.20212 PubMed DOI PMC
Gust B., Chandra G., Jakimowicz D., Yuqing T., Bruton C. J., Chater K. F. (2004). Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 54 107–128. 10.1016/S0065-2164(04)54004-2 PubMed DOI
Hoeksema H., Bannister B., Birkenmeyer R., Kagan F., Magerlein B. J., MacKellar F. A., et al. (1964). Chemical studies on lincomycin. I. The structure of lincomycin. J. Am. Chem. Soc. 86 4223–4224. 10.1021/ja01073a083 DOI
Höfer I., Crüsemann M., Radzom M., Geers B., Flachshaar D., Cai X., et al. (2011). Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem. Biol. 18 381–391. 10.1016/j.chembiol.2010.12.018 PubMed DOI
Hong H.-J., Hutchings M. I., Hill L. M., Buttner M. J. (2005). The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J. Biol. Chem. 280 13055–13061. 10.1074/jbc.M413801200 PubMed DOI
Hu Y., Phelan V., Ntai I., Farnet C. M., Zazopoulos E., Bachmann B. O. (2007). Benzodiazepine biosynthesis in Streptomyces refuineus. Chem. Biol. 14 691–701. 10.1016/j.chembiol.2007.07.006 PubMed DOI
Huang Y. T., Lyu S. Y., Chuang P. H., Hsu N. S., Li Y. S., Chan H. C., et al. (2009). In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-β-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. Chembiochem 10 2480–2487. 10.1002/cbic.200900351 PubMed DOI
Hurley L. H., Lasswell W. L., Ostrander J. M., Parry R. (1979). Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthetic conversion of tyrosine to the C2-and C3-proline moieties of anthramycin, tomaymycin, and sibiromycin. Biochemistry 18 4230–4237. 10.1021/bi00586a030 PubMed DOI
Janata J., Kadlcik S., Koberska M., Ulanova D., Kamenik Z., Novak P., et al. (2015). Lincosamide synthetase-a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS ONE 10:e0118850 10.1371/journal.pone.0118850 PubMed DOI PMC
Kadlcik S., Kucera T., Chalupska D., Gazak R., Koberska M., Ulanova D., et al. (2013). Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. PLoS ONE 8:e84902 10.1371/journal.pone.0084902 PubMed DOI PMC
Kamenik Z., Kadlcik S., Radojevic B., Jiraskova P., Kuzma M., Gazak R., et al. (2016). Deacetylation of mycothiol-derived ‘waste product’triggers the last biosynthetic steps of lincosamide antibiotics. Chem. Sci. 7 430–435. 10.1039/C5SC03327F PubMed DOI PMC
Kamenik Z., Kopecky J., Mareckova M., Ulanova D., Novotna J., Pospisil S., et al. (2009). HPLC-fluorescence detection method for determination of key intermediates of the lincomycin biosynthesis in fermentation broth. Anal. Bioanal. Chem. 393 1779–1787. 10.1007/s00216-009-2605-3 PubMed DOI
Kariyone K., Yazawa H., Kohsaka M. (1971). The structures of tomaymycin and oxotomaymycin. Chem. Pharm. Bull. 19 2289–2293. 10.1248/cpb.19.2289 DOI
Kieser T., Bibb M., Buttner M., Chater K., Hopwood D. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
Koberska M., Kopecky J., Olsovska J., Jelinkova M., Ulanova D., Man P., et al. (2008). Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol. 53 395–401. 10.1007/s12223-008-0060-8 PubMed DOI
Kuo M., Yurek D., Coats J., Chung S., Li G. (1992). Isolation and identification of 3-propylidene-Δ1-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin. J. Antibiot. 45 1773–1777. 10.7164/antibiotics.45.1773 PubMed DOI
Leimgruber W., Batcho A., Schenker F. (1965). The structure of anthramycin. J. Am. Chem. Soc. 87 5793–5795. 10.1021/ja00952a051 PubMed DOI
Li H., Graupner M., Xu H., White R. H. (2003). CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42 9771–9778. 10.1021/bi034779b PubMed DOI
Li W., Chou S. C., Khullar A., Gerratana B. (2009a). Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. Appl. Environ. Microbiol. 75 2958–2963. 10.1128/AEM.02325-08 PubMed DOI PMC
Li W., Khullar A., Chou S., Sacramo A., Gerratana B. (2009b). Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl. Environ. Microbiol. 75 2869–2878. 10.1128/AEM.02326-08 PubMed DOI PMC
Lin C. I., Sasaki E., Zhong A. S., Liu H. W. (2014). In vitro characterization of LmbK and LmbO: identification of GDP-D-erythro-alpha-D-gluco-octose as a key intermediate in lincomycin A biosynthesis. J. Am. Chem. Soc. 136 906–909. 10.1021/ja412194w PubMed DOI PMC
Magerlein B. J. (1977). “Modification of lincomycin,” in Structure-activity Relationships Among the Semisynthetic Antibiotics, ed. Pearlman D. (New York, NY: Academic Press; ), 601–651.
Najmanova L., Ulanova D., Jelinkova M., Kamenik Z., Kettnerova E., Koberska M., et al. (2014). Sequence analysis of porothramycin biosynthetic gene cluster. Folia Microbiol. 59 543–552. 10.1007/s12223-014-0339-x PubMed DOI PMC
Neusser D., Schmidt H., Spizek J., Novotna J., Peschke U., Kaschabeck S., et al. (1998). The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch. Microbiol. 169 322–332. 10.1007/s002030050578 PubMed DOI
Novotna J., Honzatko A., Bednar P., Kopecky J., Janata J., Spizek J. (2004). L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur. J. Biochem. 271 3678–3683. 10.1111/j.1432-1033.2004.04308.x PubMed DOI
Novotna J., Olsovska J., Novak P., Mojzes P., Chaloupkova R., Kamenik Z., et al. (2013). Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family. PLoS ONE 8:e79974 10.1371/journal.pone.0079974 PubMed DOI PMC
Olsovska J., Jelinkova M., Man P., Koberska M., Janata J., Flieger M. (2007). High-throughput quantification of lincomycin traces in fermentation broth of genetically modified Streptomyces spp. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography with UV detection. J. Chromatogr. A 1139 214–220. 10.1016/j.chroma.2006.11.017 PubMed DOI
Pang A.-P., Du L., Lin C.-Y., Qiao J., Zhao G.-R. (2015). Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis. J. Appl. Microbiol. 119 1064–1074. 10.1111/jam.12919 PubMed DOI
Parsons J. F., Song F., Parsons L., Calabrese K., Eisenstein E., Ladner J. E. (2004). Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43 12427–12435. 10.1021/bi049059z PubMed DOI
Peschke U., Schmidt H., Zhang H. Z., Piepersberg W. (1995). Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol. Microbiol. 16 1137–1156. 10.1111/j.1365-2958.1995.tb02338.x PubMed DOI
Rössner E., Zeeck A., König W. A. (1990). Aufklärung der struktur von hormaomycin. Angew. Chem. 102 84–85. 10.1002/ange.19901020122 DOI
Saha S., Li W., Gerratana B., Rokita S. E. (2015). Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin. Bioorg. Med. Chem. 23 449–454. 10.1016/j.bmc.2014.12.024 PubMed DOI PMC
Sasaki E., Lin C. I., Lin K. Y., Liu H. W. (2012). Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN. J. Am. Chem. Soc. 134 17432–17435. 10.1021/ja308221z PubMed DOI PMC
Schauer N. L., Ferry J. G., Honek J. F., Orme-Johnson W. H., Walsh C. (1986). Mechanistic studies of the coenzyme F420-reducing formate dehydrogenase from Methanobacterium formicicum. Biochemistry 25 7163–7168. 10.1021/bi00370a059 PubMed DOI
Schneditz G., Rentner J., Roier S., Pletz J., Herzog K. A., Bücker R., et al. (2014). Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl. Acad. Sci. U.S.A. 111 13181–13186. 10.1073/pnas.1403274111 PubMed DOI PMC
Tsunakawa M., Kamei H., Konishi M., Miyaki T., Oki T., Kawaguchi H. (1988). Porothramycin, a new antibiotic of the anthramycin group: production, isolation, structure and biological activity. J. Antibiot. 41 1366–1373. 10.7164/antibiotics.41.1366 PubMed DOI
Ulanova D., Novotna J., Smutna Y., Kamenik Z., Gazak R., Sulc M., et al. (2010). Mutasynthesis of lincomycin derivatives with activity against drug-resistant Staphylococci. Antimicrob. Agents Chemother. 54 927–930. 10.1128/AAC.00918-09 PubMed DOI PMC
Zhao Q., Wang M., Xu D., Zhang Q., Liu W. (2015). Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature 518 115–119. 10.1038/nature14137 PubMed DOI
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid