New Concept of the Biosynthesis of 4-Alkyl-L-Proline Precursors of Lincomycin, Hormaomycin, and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C-C Bond?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27014201
PubMed Central
PMC4780272
DOI
10.3389/fmicb.2016.00276
Knihovny.cz E-zdroje
- Klíčová slova
- 4-propyl-L-proline, antibiotics, anticancer drug, hormaomycin, lincomycin, natural product biosynthesis, pyrrolobenzodiazepine, secondary metabolism,
- Publikační typ
- časopisecké články MeSH
Structurally different and functionally diverse natural compounds - antitumour agents pyrrolo[1,4]benzodiazepines, bacterial hormone hormaomycin, and lincosamide antibiotic lincomycin - share a common building unit, 4-alkyl-L-proline derivative (APD). APDs arise from L-tyrosine through a special biosynthetic pathway. Its generally accepted scheme, however, did not comply with current state of knowledge. Based on gene inactivation experiments and in vitro functional tests with recombinant enzymes, we designed a new APD biosynthetic scheme for the model of lincomycin biosynthesis. In the new scheme at least one characteristic in each of five final biosynthetic steps has been changed: the order of reactions, assignment of enzymes and/or reaction mechanisms. First, we demonstrate that LmbW methylates a different substrate than previously assumed. Second, we propose a unique reaction mechanism for the next step, in which a putative γ-glutamyltransferase LmbA indirectly cleaves off the oxalyl residue by transient attachment of glutamate to LmbW product. This unprecedented mechanism would represent the first example of the C-C bond cleavage catalyzed by a γ-glutamyltransferase, i.e., an enzyme that appears unsuitable for such activity. Finally, the inactivation experiments show that LmbX is an isomerase indicating that it transforms its substrate into a compound suitable for reduction by LmbY, thereby facilitating its subsequent complete conversion to APD 4-propyl-L-proline. Elucidation of the APD biosynthesis has long time resisted mainly due to the apparent absence of relevant C-C bond cleaving enzymatic activity. Our proposal aims to unblock this situation not only for lincomycin biosynthesis, but generally for all above mentioned groups of bioactive natural products with biotechnological potential.
Zobrazit více v PubMed
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. PubMed PMC
Blankenfeldt W., Kuzin A. P., Skarina T., Korniyenko Y., Tong L., Bayer P., et al. (2004). Structure and function of the phenazine biosynthetic protein PhzF from PubMed DOI PMC
Brahme N. M., Gonzalez J. E., Rolls J. P., Hessler E. J., Mizsak S., Hurley L. H. (1984). Biosynthesis of the lincomycins. 1. Studies using stable isotopes on the biosynthesis of the propyl- and ethyl-L-hygric acid moieties of lincomycins A and B. DOI
Braun S. D., Hofmann J., Wensing A., Ullrich M., Weingart H., Völksch B., et al. (2010). Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by PubMed DOI PMC
Castellano I., Merlino A. (2012). γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. PubMed DOI PMC
Colabroy K. L., Hackett W. T., Markham A. J., Rosenberg J., Cohen D. E., Jacobson A. (2008). Biochemical characterization of L-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis. PubMed DOI
Colabroy K. L., Smith I. R., Vlahos A. H., Markham A. J., Jakubik M. E. (2014). Defining a kinetic mechanism for L-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from PubMed DOI
Connor K. L., Colabroy K. L., Gerratana B. (2011). A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin. PubMed DOI PMC
Gauze G. F., Preobrazhenskaia T. P., Ivanitskaia L. P., Sveshnikova M. A. (1969). Production of the antibiotic sibiromycin by the PubMed
Gerratana B. (2012). Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. PubMed DOI PMC
Gust B., Chandra G., Jakimowicz D., Yuqing T., Bruton C. J., Chater K. F. (2004). Lambda red-mediated genetic manipulation of antibiotic-producing PubMed DOI
Hoeksema H., Bannister B., Birkenmeyer R., Kagan F., Magerlein B. J., MacKellar F. A., et al. (1964). Chemical studies on lincomycin. I. The structure of lincomycin. DOI
Höfer I., Crüsemann M., Radzom M., Geers B., Flachshaar D., Cai X., et al. (2011). Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. PubMed DOI
Hong H.-J., Hutchings M. I., Hill L. M., Buttner M. J. (2005). The role of the novel Fem protein VanK in vancomycin resistance in PubMed DOI
Hu Y., Phelan V., Ntai I., Farnet C. M., Zazopoulos E., Bachmann B. O. (2007). Benzodiazepine biosynthesis in PubMed DOI
Huang Y. T., Lyu S. Y., Chuang P. H., Hsu N. S., Li Y. S., Chan H. C., et al. (2009). In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-β-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. PubMed DOI
Hurley L. H., Lasswell W. L., Ostrander J. M., Parry R. (1979). Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthetic conversion of tyrosine to the C2-and C3-proline moieties of anthramycin, tomaymycin, and sibiromycin. PubMed DOI
Janata J., Kadlcik S., Koberska M., Ulanova D., Kamenik Z., Novak P., et al. (2015). Lincosamide synthetase-a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PubMed DOI PMC
Kadlcik S., Kucera T., Chalupska D., Gazak R., Koberska M., Ulanova D., et al. (2013). Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. PubMed DOI PMC
Kamenik Z., Kadlcik S., Radojevic B., Jiraskova P., Kuzma M., Gazak R., et al. (2016). Deacetylation of mycothiol-derived ‘waste product’triggers the last biosynthetic steps of lincosamide antibiotics. PubMed DOI PMC
Kamenik Z., Kopecky J., Mareckova M., Ulanova D., Novotna J., Pospisil S., et al. (2009). HPLC-fluorescence detection method for determination of key intermediates of the lincomycin biosynthesis in fermentation broth. PubMed DOI
Kariyone K., Yazawa H., Kohsaka M. (1971). The structures of tomaymycin and oxotomaymycin. DOI
Kieser T., Bibb M., Buttner M., Chater K., Hopwood D. (2000).
Koberska M., Kopecky J., Olsovska J., Jelinkova M., Ulanova D., Man P., et al. (2008). Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain PubMed DOI
Kuo M., Yurek D., Coats J., Chung S., Li G. (1992). Isolation and identification of 3-propylidene-Δ1-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin. PubMed DOI
Leimgruber W., Batcho A., Schenker F. (1965). The structure of anthramycin. PubMed DOI
Li H., Graupner M., Xu H., White R. H. (2003). CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in PubMed DOI
Li W., Chou S. C., Khullar A., Gerratana B. (2009a). Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. PubMed DOI PMC
Li W., Khullar A., Chou S., Sacramo A., Gerratana B. (2009b). Biosynthesis of sibiromycin, a potent antitumor antibiotic. PubMed DOI PMC
Lin C. I., Sasaki E., Zhong A. S., Liu H. W. (2014). In vitro characterization of LmbK and LmbO: identification of GDP-D-erythro-alpha-D-gluco-octose as a key intermediate in lincomycin A biosynthesis. PubMed DOI PMC
Magerlein B. J. (1977). “Modification of lincomycin,” in
Najmanova L., Ulanova D., Jelinkova M., Kamenik Z., Kettnerova E., Koberska M., et al. (2014). Sequence analysis of porothramycin biosynthetic gene cluster. PubMed DOI PMC
Neusser D., Schmidt H., Spizek J., Novotna J., Peschke U., Kaschabeck S., et al. (1998). The genes lmbB1 and lmbB2 of PubMed DOI
Novotna J., Honzatko A., Bednar P., Kopecky J., Janata J., Spizek J. (2004). L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. PubMed DOI
Novotna J., Olsovska J., Novak P., Mojzes P., Chaloupkova R., Kamenik Z., et al. (2013). Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family. PubMed DOI PMC
Olsovska J., Jelinkova M., Man P., Koberska M., Janata J., Flieger M. (2007). High-throughput quantification of lincomycin traces in fermentation broth of genetically modified PubMed DOI
Pang A.-P., Du L., Lin C.-Y., Qiao J., Zhao G.-R. (2015). Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of PubMed DOI
Parsons J. F., Song F., Parsons L., Calabrese K., Eisenstein E., Ladner J. E. (2004). Structure and function of the phenazine biosynthesis protein PhzF from PubMed DOI
Peschke U., Schmidt H., Zhang H. Z., Piepersberg W. (1995). Molecular characterization of the lincomycin-production gene cluster of PubMed DOI
Rössner E., Zeeck A., König W. A. (1990). Aufklärung der struktur von hormaomycin. DOI
Saha S., Li W., Gerratana B., Rokita S. E. (2015). Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin. PubMed DOI PMC
Sasaki E., Lin C. I., Lin K. Y., Liu H. W. (2012). Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN. PubMed DOI PMC
Schauer N. L., Ferry J. G., Honek J. F., Orme-Johnson W. H., Walsh C. (1986). Mechanistic studies of the coenzyme F420-reducing formate dehydrogenase from PubMed DOI
Schneditz G., Rentner J., Roier S., Pletz J., Herzog K. A., Bücker R., et al. (2014). Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. PubMed DOI PMC
Tsunakawa M., Kamei H., Konishi M., Miyaki T., Oki T., Kawaguchi H. (1988). Porothramycin, a new antibiotic of the anthramycin group: production, isolation, structure and biological activity. PubMed DOI
Ulanova D., Novotna J., Smutna Y., Kamenik Z., Gazak R., Sulc M., et al. (2010). Mutasynthesis of lincomycin derivatives with activity against drug-resistant Staphylococci. PubMed DOI PMC
Zhao Q., Wang M., Xu D., Zhang Q., Liu W. (2015). Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. PubMed DOI
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid