Novel pathway of 3-hydroxyanthranilic acid formation in limazepine biosynthesis reveals evolutionary relation between phenazines and pyrrolobenzodiazepines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29773836
PubMed Central
PMC5958127
DOI
10.1038/s41598-018-26179-w
PII: 10.1038/s41598-018-26179-w
Knihovny.cz E-zdroje
- MeSH
- benzodiazepiny chemie metabolismus MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie MeSH
- kyselina 3-hydroxyanthranilová metabolismus MeSH
- metabolické sítě a dráhy MeSH
- molekulární evoluce MeSH
- sekvenční analýza proteinů MeSH
- Streptomyces genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzodiazepiny MeSH
- kyselina 3-hydroxyanthranilová MeSH
Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.
Zobrazit více v PubMed
Mantaj J, Jackson PJ, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)- containing antibody-drug conjugates (ADCs) Angew. Chemie Int. Ed. 2017;56:462–488. doi: 10.1002/anie.201510610. PubMed DOI PMC
Gerratana B. Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med. Res. Rev. 2012;32:254–293. doi: 10.1002/med.20212. PubMed DOI PMC
Wu J, et al. γ-H2AX foci formation as a pharmacodynamic marker of DNA damage produced by DNA cross-linking agents: results from 2 phase I clinical trials of SJG-136 (SG2000) Clin. cancer Res. 2013;19:721–730. doi: 10.1158/1078-0432.CCR-12-2529. PubMed DOI PMC
Whiteman KR, et al. The antibody-drug conjugate (ADC) IMGN779 is highly active in vitro and in vivo against acute myeloid leukemia (AML) with FLT3-ITD mutations. Blood. 2014;124:2321.
Stein AS, Walter RB, Advani AS, Ho PA, Erba HP. SGN-CD33A (vadastuximab talirine) followed by allogeneic hematopoietic stem cell transplant (alloHSCT) results in durable complete remissions (CRs) in patients with acute myeloid leukemia (AML) Biol. Blood Marrow Transplant. 2016;22:S211–S212. doi: 10.1016/j.bbmt.2015.11.608. DOI
Kemp GC, et al. Synthesis and in vitro evaluation of SG3227, a pyrrolobenzodiazepine dimer antibody-drug conjugate payload based on sibiromycin. Bioorg. Med. Chem. Lett. 2017;27:1154–1158. doi: 10.1016/j.bmcl.2017.01.074. PubMed DOI
Rudin CM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18:42–51. doi: 10.1016/S1470-2045(16)30565-4. PubMed DOI PMC
Najmanova L, et al. Sequence analysis of porothramycin biosynthetic gene cluster. Folia Microbiol. (Praha). 2014;59:543–552. doi: 10.1007/s12223-014-0339-x. PubMed DOI PMC
Li W, Chou S, Khullar A, Gerratana B. Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. Appl. Environ. Microbiol. 2009;75:2958–2963. doi: 10.1128/AEM.02325-08. PubMed DOI PMC
Li W, Khullar A, Chou S, Sacramo A, Gerratana B. Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl. Environ. Microbiol. 2009;75:2869–2878. doi: 10.1128/AEM.02326-08. PubMed DOI PMC
Hu Y, et al. Benzodiazepine biosynthesis in Streptomyces refuineus. Chem. Biol. 2007;14:691–701. doi: 10.1016/j.chembiol.2007.05.009. PubMed DOI
Schneditz G, et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl. Acad. Sci. USA. 2014;111:13181–13186. doi: 10.1073/pnas.1403274111. PubMed DOI PMC
Kamenik Z, et al. Diversity of alkylproline moieties in pyrrolobenzodiazepines arises from postcondensation modifications of a unified building block. ACS Chem. Biol. 2017;12:1993–1998. doi: 10.1021/acschembio.7b00335. PubMed DOI
Jiraskova P, et al. New concept of the biosynthesis of 4-alkyl-L-proline precursors of lincomycin, hormaomycin, and pyrrolobenzodiazepines: could a γ-glutamyltransferase cleave the C-C bond? Front. Microbiol. 2016;7:1–14. doi: 10.3389/fmicb.2016.00276. PubMed DOI PMC
Hofer I, et al. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem. Biol. 2011;18:381–391. doi: 10.1016/j.chembiol.2010.12.018. PubMed DOI
Koberska M, et al. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol. (Praha). 2008;53:395–401. doi: 10.1007/s12223-008-0060-8. PubMed DOI
Giessen TW, Kraas FI, Marahiel MA. A four-enzyme pathway for 3,5-dihydroxy-4-methylanthranilic acid formation and incorporation into the antitumor antibiotic sibiromycin. Biochemistry. 2011;50:5680–5692. doi: 10.1021/bi2006114. PubMed DOI
von Tesmar A, et al. Total biosynthesis of the pyrrolo[4,2]benzodiazepine scaffold tomaymycin on an in vitro reconstituted NRPS system. Cell Chem. Biol. 2017;24:1216–1227. doi: 10.1016/j.chembiol.2017.08.001. PubMed DOI
Fotso S, et al. Limazepines A-F, pyrrolo[1,4]benzodiazepine antibiotics from an indonesian Micrococcus sp. J. Nat. Prod. 2009;72:690–695. doi: 10.1021/np800827w. PubMed DOI
Fotso S, et al. Correction to Limazepines A-F, pyrrolo[1,4]benzodiazepine antibiotics from an Indonesian Micrococcus sp. J. Nat. Prod. 2016;79:259. doi: 10.1021/acs.jnatprod.5b01098. PubMed DOI
Hopwood, D. A. et al. Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich (1985).
Vachalova K, Felsberg J, Petricek M, Spizek J, Tichy P. Copy number determination of different derivatives of the streptomycete mini-plasmid pSLG33. Folia Microbiol. (Praha). 1995;40:231–237. doi: 10.1007/BF02814198. DOI
Weber T, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:W237–W243. doi: 10.1093/nar/gkv437. PubMed DOI PMC
Solovyev, V. & Salamov, A. Automatic annotation of microbial genomes and metagenomic sequences. Metagenomics its Appl. Agric. Biomed. Environ. Stud. 61–78 (2011).
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–4641. doi: 10.1093/nar/27.23.4636. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Marchler-Bauer A, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC
Mavrodi DV, et al. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 1998;180:2541–2548. PubMed PMC
Ashenafi M, Reddy PT, Parsons JF, Byrnes WM. The fused anthranilate synthase from Streptomyces venezuelae functions as a monomer. Mol. Cell. Biochem. 2015;400:9–15. doi: 10.1007/s11010-014-2256-3. PubMed DOI PMC
Blankenfeldt W, Parsons JF. The structural biology of phenazine biosynthesis. Curr. Opin. Struct. Biol. 2014;29:26–33. doi: 10.1016/j.sbi.2014.08.013. PubMed DOI PMC
Li Q-A, Mavrodi DV, Thomashow LS, Roessle M, Blankenfeldt W. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J. Biol. Chem. 2011;286:18213–18221. doi: 10.1074/jbc.M110.183418. PubMed DOI PMC
Parsons JF, Calabrese K, Eisenstein E, Ladner JE. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry. 2003;42:5684–5693. doi: 10.1021/bi027385d. PubMed DOI
Osada H, Uramoto M, Uzawa J, Kajikawa K, Isono K. New pyrrolobenzodiazepine antibiotics, RK-1441A and B. II. isolation and structure. Agric. Biol. Chem. 1990;54:2883–2887. PubMed
Blankenfeldt W, et al. Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc. Natl. Acad. Sci. USA. 2004;101:16431–16436. doi: 10.1073/pnas.0407371101. PubMed DOI PMC
Parsons JF, et al. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry. 2004;43:12427–12435. doi: 10.1021/bi049059z. PubMed DOI
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat. Prod. Rep. 2018;35:257–289. doi: 10.1039/C7NP00047B. PubMed DOI
Buschiazzo A, et al. Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. Proc. Natl. Acad. Sci. USA. 2006;103:1705–1710. doi: 10.1073/pnas.0509010103. PubMed DOI PMC
Cirilli M, Zheng R, Scapin G, Blanchard JS. Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase. Biochemistry. 1998;37:16452–16458. doi: 10.1021/bi982138o. PubMed DOI
Rubinstein A, Major DT. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase. J. Am. Chem. Soc. 2009;131:8513–8521. doi: 10.1021/ja900716y. PubMed DOI
Diederich C, et al. Mechanisms and specificity of phenazine biosynthesis protein PhzF. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-06278-w. PubMed DOI PMC
Kopka ML, et al. Crystal structure of a covalent DNA-drug adduct: anthramycin bound to C-C-A-A-C-G-T-T-G-G and a molecular explanation of specificity. Biochemistry. 1994;33:13593–13610. doi: 10.1021/bi00250a011. PubMed DOI
Dornisch E, et al. Biosynthesis of the enterotoxic pyrrolobenzodiazepine natural product tilivalline. Angew. Chem. Int. Ed. Engl. 2017;56:14753–14757. doi: 10.1002/anie.201707737. PubMed DOI PMC
Losada AA, et al. Caboxamycin biosynthesis pathway and identification of novel benzoxazoles produced by cross-talk in Streptomyces sp. NTK 937. Microb. Biotechnol. 2017;10:873–885. doi: 10.1111/1751-7915.12716. PubMed DOI PMC
Lv M, Zhao J, Deng Z, Yu Y. Characterization of the biosynthetic gene cluster for benzoxazole antibiotics A33853 reveals unusual assembly logic. Chem. Biol. 2015;22:1313–1324. doi: 10.1016/j.chembiol.2015.09.005. PubMed DOI
McAlpine JB, et al. Biosynthesis of diazepinomicin/ECO-4601, a Micromonospora secondary metabolite with a novel ring system. J. Nat. Prod. 2008;71:1585–1590. doi: 10.1021/np800376n. PubMed DOI
Wu Q, et al. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882. Antimicrob. Agents Chemother. 2011;55:974–982. doi: 10.1128/AAC.01130-10. PubMed DOI PMC
Li J, Xie Z, Wang M, Ai G, Chen Y. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115. PLoS One. 2015;10:1–19. PubMed PMC
Saha S, Li W, Gerratana B, Rokita SE. Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin. Bioorg. Med. Chem. 2015;23:449–454. doi: 10.1016/j.bmc.2014.12.024. PubMed DOI PMC
Connor KL, Colabroy KL, Gerratana B. A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin. Biochemistry. 2011;50:8926–8936. doi: 10.1021/bi201148a. PubMed DOI PMC
Zhong G, Zhao Q, Zhang Q, Liu W. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage. Nat. Commun. 2017;8:1–10. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC