Elucidation of salicylate attachment in celesticetin biosynthesis opens the door to create a library of more efficient hybrid lincosamide antibiotics

. 2017 May 01 ; 8 (5) : 3349-3355. [epub] 20170323

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28507704

Lincosamides, which are produced by streptomycetes, compose a small but clinically important class of antibiotics. The recent elucidation of the condensation and post-condensation biosynthetic steps of the lincosamides lincomycin and celesticetin revealed several unexpected reaction mechanisms. Here, we prepared recombinant proteins involved in the celesticetin biosynthetic pathway and used them for in vitro assays that were monitored by LC-MS. Our results elucidate the last biosynthetic step of celesticetin: the attachment of salicylic acid is catalyzed by the Ccb2 acyl-CoA ligase and the Ccb1 acyltransferase. Ccb1 belongs to the WS/DGAT protein family and, in contrast to the characterized members of the family, has unusual substrate specificity. To the best of our knowledge, Ccb1 is the first protein in this family that transfers a benzoyl derivative-CoA conjugate and is the first WS/DGAT protein involved in the biosynthesis of secondary metabolites. Furthermore, we exploited the relaxed substrate specificities of Ccb1 and Ccb2, as well as three additional upstream post-condensation biosynthetic proteins in the celesticetin pathway, and combined the lincomycin and the celesticetin biosynthetic pathways in vitro. In this way, we prepared a library of 150 novel hybrid lincosamides, including two unnatural chimeras of lincomycin and celesticetin, which were shown to have antibacterial properties more pronounced than clinically used lincomycin. These achievements may be considered a case study in applying knowledge about biosynthetic machinery to assemble a large number of compounds from originally a small group of natural products without the need for chemical synthesis.

Zobrazit více v PubMed

Magerlein B. J., Modification of lincomycin, in Structure-activity relationships among the semisynthetic antibiotics, ed. D. Pearlman, Academic press, New York, 1977, p. 601.

Obonyo C. O., Juma E. A. Malar. J. 2012;11:2. PubMed PMC

Colabroy K. L., Hackett W. T., Markham A. J., Rosenberg J., Cohen D. E., Jacobson A. Arch. Biochem. Biophys. 2008;479:131. PubMed

Novotna J., Olsovska J., Novak P., Mojzes P., Chaloupkova R., Kamenik Z., Spizek J., Kutejova E., Mareckova M., Tichy P., Damborsky J., Janata J. PLoS One. 2013;8:e79974. PubMed PMC

Najmanová L., Kutejová E., Kadlec J., Polan M., Olšovská J., Benada O., Novotná J., Kameník Z., Halada P., Bauer J., Janata J. ChemBioChem. 2013;14:2259. PubMed

Jiraskova P., Gazak R., Kamenik Z., Steiningerova L., Najmanova L., Kadlcik S., Novotna J., Kuzma M., Janata J. Front. Microbiol. 2016;7:276. PubMed PMC

Sasaki E., Lin C.-I., Lin K.-Y., Liu H.-W. J. Am. Chem. Soc. 2012;134:17432. PubMed PMC

Lin C.-I., Sasaki E., Zhong A., Liu H.-W. J. Am. Chem. Soc. 2014;136:906. PubMed PMC

Zhao Q., Wang M., Xu D., Zhang Q., Liu W. Nature. 2015;518:115. PubMed

Janata J., Kadlcik S., Koberska M., Ulanova D., Kamenik Z., Novak P., Kopecky J., Novotna J., Radojevic B., Plhackova K., Gazak R., Najmanova L. PLoS One. 2015;10:e0118850. PubMed PMC

Kamenik Z., Kadlcik S., Radojevic B., Jiraskova P., Kuzma M., Gazak R., Najmanova L., Kopecky J., Janata J. Chem. Sci. 2016;7:430. PubMed PMC

Wang M., Zhao Q., Zhang Q., Liu W. J. Am. Chem. Soc. 2016;138:6348. PubMed

Ushimaru R., Lin C.-I., Sasaki E., Liu H.-W. ChemBioChem. 2016;17:1606. PubMed PMC

Silakowski B., Kunze B., Nordsiek G., Blöcker H., Höfle G., Müller R. Eur. J. Biochem. 2000;267:6476. PubMed

Cooke H. A., Zhang J., Griffin M. A., Nonaka K., van Lanen S. G., Shen B., Bruner S. D. J. Am. Chem. Soc. 2007;129:7728. PubMed

Pickens L. B., Sawaya M. R., Rasool H., Pashkov I., Yeates T. O., Tang Y. J. Biol. Chem. 2011;286:41539. PubMed PMC

Röttig A., Steinbüchel A. Microbiol. Mol. Biol. Rev. 2013;77:277. PubMed PMC

Wältermann M., Stöveken T., Steinbüchel A. Biochimie. 2007;89:230. PubMed

Zhang Y. M., Rock C. O. J. Lipid Res. 2008;49:1867. PubMed PMC

Six D. A., Carty S. M., Guan Z., Raetz C. R. H. Biochemistry. 2008;47:8623. PubMed PMC

Onwueme K. C., Ferreras J. A., Buglino J., Lima C. D., Quadri L. E. N. Proc. Natl. Acad. Sci. U. S. A. 2004;101:4608. PubMed PMC

Bergendahl V., Linne U., Marahiel M. A. Eur. J. Biochem. 2002;269:620. PubMed

Lewendon A., Murray I. A., Shaw W. V., Gibbs M. R., Leslie A. G. Biochemistry. 1994;33:1944. PubMed

Stöveken T., Kalscheuer R., Malkus U., Reichelt R., Steinbüchel A. J. Bacteriol. 2005;187:1369. PubMed PMC

Argoudelis A. D., Brodasky T. F. J. Antibiot. 1972;25:194. PubMed

Argoudelis A. D., Coats J. H., Johnson L. E. J. Antibiot. 1974;27:738. PubMed

Hanada M., Tsunakawa M., Tomita K., Tsukiura H., Kawaguchi H. J. Antibiot. 1980;33:751. PubMed

Kadlcik S., Kucera T., Chalupska D., Gazak R., Koberska M., Ulanova D., Kopecky J., Kutejova E., Najmanova L., Janata J. PLoS One. 2013;8:e84902. PubMed PMC

Ulanova D., Novotna J., Smutna Y., Kamenik Z., Gazak R., Sulc M., Sedmera P., Kadlcik S., Plhackova K., Janata J. Antimicrob. Agents Chemother. 2010;54:927. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...