Elucidation of salicylate attachment in celesticetin biosynthesis opens the door to create a library of more efficient hybrid lincosamide antibiotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28507704
PubMed Central
PMC5416915
DOI
10.1039/c6sc04235j
PII: c6sc04235j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Lincosamides, which are produced by streptomycetes, compose a small but clinically important class of antibiotics. The recent elucidation of the condensation and post-condensation biosynthetic steps of the lincosamides lincomycin and celesticetin revealed several unexpected reaction mechanisms. Here, we prepared recombinant proteins involved in the celesticetin biosynthetic pathway and used them for in vitro assays that were monitored by LC-MS. Our results elucidate the last biosynthetic step of celesticetin: the attachment of salicylic acid is catalyzed by the Ccb2 acyl-CoA ligase and the Ccb1 acyltransferase. Ccb1 belongs to the WS/DGAT protein family and, in contrast to the characterized members of the family, has unusual substrate specificity. To the best of our knowledge, Ccb1 is the first protein in this family that transfers a benzoyl derivative-CoA conjugate and is the first WS/DGAT protein involved in the biosynthesis of secondary metabolites. Furthermore, we exploited the relaxed substrate specificities of Ccb1 and Ccb2, as well as three additional upstream post-condensation biosynthetic proteins in the celesticetin pathway, and combined the lincomycin and the celesticetin biosynthetic pathways in vitro. In this way, we prepared a library of 150 novel hybrid lincosamides, including two unnatural chimeras of lincomycin and celesticetin, which were shown to have antibacterial properties more pronounced than clinically used lincomycin. These achievements may be considered a case study in applying knowledge about biosynthetic machinery to assemble a large number of compounds from originally a small group of natural products without the need for chemical synthesis.
Zobrazit více v PubMed
Magerlein B. J., Modification of lincomycin, in Structure-activity relationships among the semisynthetic antibiotics, ed. D. Pearlman, Academic press, New York, 1977, p. 601.
Obonyo C. O., Juma E. A. Malar. J. 2012;11:2. PubMed PMC
Colabroy K. L., Hackett W. T., Markham A. J., Rosenberg J., Cohen D. E., Jacobson A. Arch. Biochem. Biophys. 2008;479:131. PubMed
Novotna J., Olsovska J., Novak P., Mojzes P., Chaloupkova R., Kamenik Z., Spizek J., Kutejova E., Mareckova M., Tichy P., Damborsky J., Janata J. PLoS One. 2013;8:e79974. PubMed PMC
Najmanová L., Kutejová E., Kadlec J., Polan M., Olšovská J., Benada O., Novotná J., Kameník Z., Halada P., Bauer J., Janata J. ChemBioChem. 2013;14:2259. PubMed
Jiraskova P., Gazak R., Kamenik Z., Steiningerova L., Najmanova L., Kadlcik S., Novotna J., Kuzma M., Janata J. Front. Microbiol. 2016;7:276. PubMed PMC
Sasaki E., Lin C.-I., Lin K.-Y., Liu H.-W. J. Am. Chem. Soc. 2012;134:17432. PubMed PMC
Lin C.-I., Sasaki E., Zhong A., Liu H.-W. J. Am. Chem. Soc. 2014;136:906. PubMed PMC
Zhao Q., Wang M., Xu D., Zhang Q., Liu W. Nature. 2015;518:115. PubMed
Janata J., Kadlcik S., Koberska M., Ulanova D., Kamenik Z., Novak P., Kopecky J., Novotna J., Radojevic B., Plhackova K., Gazak R., Najmanova L. PLoS One. 2015;10:e0118850. PubMed PMC
Kamenik Z., Kadlcik S., Radojevic B., Jiraskova P., Kuzma M., Gazak R., Najmanova L., Kopecky J., Janata J. Chem. Sci. 2016;7:430. PubMed PMC
Wang M., Zhao Q., Zhang Q., Liu W. J. Am. Chem. Soc. 2016;138:6348. PubMed
Ushimaru R., Lin C.-I., Sasaki E., Liu H.-W. ChemBioChem. 2016;17:1606. PubMed PMC
Silakowski B., Kunze B., Nordsiek G., Blöcker H., Höfle G., Müller R. Eur. J. Biochem. 2000;267:6476. PubMed
Cooke H. A., Zhang J., Griffin M. A., Nonaka K., van Lanen S. G., Shen B., Bruner S. D. J. Am. Chem. Soc. 2007;129:7728. PubMed
Pickens L. B., Sawaya M. R., Rasool H., Pashkov I., Yeates T. O., Tang Y. J. Biol. Chem. 2011;286:41539. PubMed PMC
Röttig A., Steinbüchel A. Microbiol. Mol. Biol. Rev. 2013;77:277. PubMed PMC
Wältermann M., Stöveken T., Steinbüchel A. Biochimie. 2007;89:230. PubMed
Zhang Y. M., Rock C. O. J. Lipid Res. 2008;49:1867. PubMed PMC
Six D. A., Carty S. M., Guan Z., Raetz C. R. H. Biochemistry. 2008;47:8623. PubMed PMC
Onwueme K. C., Ferreras J. A., Buglino J., Lima C. D., Quadri L. E. N. Proc. Natl. Acad. Sci. U. S. A. 2004;101:4608. PubMed PMC
Bergendahl V., Linne U., Marahiel M. A. Eur. J. Biochem. 2002;269:620. PubMed
Lewendon A., Murray I. A., Shaw W. V., Gibbs M. R., Leslie A. G. Biochemistry. 1994;33:1944. PubMed
Stöveken T., Kalscheuer R., Malkus U., Reichelt R., Steinbüchel A. J. Bacteriol. 2005;187:1369. PubMed PMC
Argoudelis A. D., Brodasky T. F. J. Antibiot. 1972;25:194. PubMed
Argoudelis A. D., Coats J. H., Johnson L. E. J. Antibiot. 1974;27:738. PubMed
Hanada M., Tsunakawa M., Tomita K., Tsukiura H., Kawaguchi H. J. Antibiot. 1980;33:751. PubMed
Kadlcik S., Kucera T., Chalupska D., Gazak R., Koberska M., Ulanova D., Kopecky J., Kutejova E., Najmanova L., Janata J. PLoS One. 2013;8:e84902. PubMed PMC
Ulanova D., Novotna J., Smutna Y., Kamenik Z., Gazak R., Sulc M., Sedmera P., Kadlcik S., Plhackova K., Janata J. Antimicrob. Agents Chemother. 2010;54:927. PubMed PMC
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid