Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24386435
PubMed Central
PMC3874040
DOI
10.1371/journal.pone.0084902
PII: PONE-D-13-35759
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie MeSH
- dipeptidy chemie MeSH
- linkomycin biosyntéza chemie MeSH
- linkosamidy biosyntéza chemie MeSH
- molekulární evoluce * MeSH
- simulace molekulární dynamiky * MeSH
- Streptomyces enzymologie MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- celesticetin A MeSH Prohlížeč
- dipeptidy MeSH
- linkomycin MeSH
- linkosamidy MeSH
- prolyl-proline MeSH Prohlížeč
Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accommodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin--but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit.
Zobrazit více v PubMed
Brahme NM, Gonzalez JE, Rolls JP, Hessler EJ, Mizsak S et al. (1984) Biosynthesis of the lincomycins. 1. Studies using stable isotopes on the biosynthesis of the propyl-L-hygric and ethyl-L-hygric acid moieties of lincomycin-A and lincomycin-B. J Am Chem. Soc 106: 7873-7878.
Neusser D, Schmidt H, Spizèk J, Novotnà J, Peschke U et al. (1998) The genes PubMed DOI
Novotná J, Honzátko A, Bednář P, Kopecký J, Janata J et al. (2004) L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur J Biochem 271: 3678-3683. doi: 10.1111/j.1432-1033.2004.04308.x. PubMed: 15355345. PubMed DOI
Hu Y, Phelan V, Ntai I, Farnet CM, Zazopoulos E et al. (2007) Benzodiazepine biosynthesis in PubMed DOI
Li W, Khullar A, Chou S, Sacramo A, Gerratana B (2009) Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl Environ Microbiol 75: 2869-2878. doi: 10.1128/AEM.02326-08. PubMed: 19270142. PubMed DOI PMC
Li W, Chou SC, Khullar A, Gerratana B (2009) Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. Appl Environ Microbiol 75: 2958-2963. doi: 10.1128/AEM.02325-08. PubMed: 19270147. PubMed DOI PMC
Argoudelis AD, Fox JA, Eble TE (1965) U-21,669 - A new lincomycin-related antibiotic. Biochemistry 4: 698-703. doi: 10.1021/bi00880a014. PubMed: 14323574. PubMed DOI
Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D et al. (2011) Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem. Biol 18: 381-391. PubMed
Chung ST, Manis JJ, McWethy SJ, Patt TE, Witz DF, et al. (1997) Fermentation, biosynthesis, and molecular genetics of lincomycin. In: Strohl WR. Biotechnology of Antibiotics; New York: Drugs and the pharmaceutical sciences. pp. 165–186
Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene-cluster of PubMed DOI
Koběrská M, Kopecký J, Olšovská J, Jelínková M, Ulanova D et al. (2008) Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain PubMed DOI
Thomas MG, Burkart MD, Walsh CT (2002) Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol 9: 171-184. PubMed
Garneau S, Dorrestein PC, Kelleher NL, Walsh CT (2005) Characterization of the formation of the pyrrole moiety during clorobiocin and coumermycin A PubMed DOI
Méjean A, Mann S, Vassiliadis G, Lombard B, Loew D et al. (2010) PubMed DOI
Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P et al. (2011) Insights into the complex biosynthesis of the leupyrrins in PubMed DOI
Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97: 2651-2673. doi: 10.1021/cr960029e. PubMed: 11851476. PubMed DOI
Wang ZX, Li SM, Heide L (2000) Identification of the coumermycin A PubMed DOI PMC
Pojer F, Li SM, Heide L (2002) Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology 148: 3901-3911. PubMed: 12480894. PubMed
Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S et al. (2004) The PubMed DOI
Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C et al. (2007) Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic friulimicin in PubMed DOI PMC
Wang Y, Chen Y, Shen QR, Yin XH (2011) Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from PubMed DOI PMC
de Crécy-Lagard V, Blanc V, Gil P, Naudin L, Lorenzon S et al. (1997) Pristinamycin I biosynthesis in PubMed PMC
Pohle S, Appelt C, Roux M, Fiedler H-P, Süssmuth RD (2011) Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: Deciphering unprecedented ways of unusual hydroxylation reactions. J Am Chem Soc 133: 6194-6205. doi: 10.1021/ja108971p. PubMed: 21456593. PubMed DOI
Pfennig F, Schauwecker F, Keller U (1999) Molecular characterization of the genes of actinomycin synthetase I and of a 4-methyl-3-hydroxyanthranilic acid carrier protein involved in the assembly of the acylpeptide chain of actinomycin in PubMed DOI
Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M et al. (2005) Structure and biosynthesis of myxochromides S1-3 in PubMed DOI
Scholz-Schroeder BK, Soule JD, Gross DC (2003) The PubMed DOI
Hoffmann D, Hevel JM, Moore RE, Moore BS (2003) Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from PubMed DOI
Luesch H, Hoffmann D, Hevel JM, Becker JE, Golakoti T et al. (2003) Biosynthesis of 4-methylproline in cyanobacteria: Cloning of PubMed DOI
Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H et al. (1999) The mycosubtilin synthetase of PubMed DOI PMC
Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183: 6265-6273. doi: 10.1128/JB.183.21.6265-6273.2001. PubMed: 11591669. PubMed DOI PMC
Saito F, Hori K, Kanda M, Kurotsu T, Saito Y (1994) Entire nucleotide-sequence for PubMed
Mootz HD, Marahiel MA (1997) The tyrocidine biosynthesis operon of PubMed PMC
Samel SA, Wagner B, Marahiel MA, Essen LO (2006) The thioesterase domain of the fengycin biosynthesis cluster: A structural base for the macrocyclization of a non-ribosomal lipopeptide. J Mol Biol 359: 876-889. doi: 10.1016/j.jmb.2006.03.062. PubMed: 16697411. PubMed DOI
Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes PubMed PMC
Kawasaki T, Sakurai F, Nagatsuka SY, Hayakawa Y (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer PubMed DOI
Kim D, Park YK, Lee JS, Kim JF, Jeong H et al. (2006) Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium
Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS et al. (2008) DKxanthene biosynthesis - Understanding the basis for diversity-oriented secondary metabolism. Chem Biol 15: 771-781. doi: 10.1016/j.chembiol.2008.06.005. PubMed: 18721748. PubMed DOI
Zhang XJ, Parry RJ (2007) Cloning and characterization of the pyrrolomycin biosynthetic gene clusters from PubMed DOI PMC
Maharjan S, Aryal N, Bhattarai S, Koju D, Lamichhane J et al. (2012) Biosynthesis of the nargenicin A(1) pyrrole moiety from PubMed DOI
Li CX, Roege KE, Kelly WL (2009) Analysis of the Indanomycin Biosynthetic Gene Cluster from PubMed DOI
Wu QL, Liang JD, Lin SJ, Zhou XF, Bai LQ et al. (2011) Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in PubMed DOI PMC
Méjean A, Mann S, Maldiney T, Vassiliadis G, Lequin O et al. (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium PubMed DOI
Rantala-Ylinen A, Känä S, Wang H, Rouhiainen L, Wahlsten M et al. (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium PubMed DOI PMC
Becker JE, Moore RE, Moore BS (2004) Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325: 35-42. doi: 10.1016/j.gene.2003.09.034. PubMed: 14697508. PubMed DOI
Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16: 4174-4183. doi: 10.1093/emboj/16.14.4174. PubMed: 9250661. PubMed DOI PMC
Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6: 493-505. doi: 10.1016/S1074-5521(99)80082-9. PubMed: 10421756. PubMed DOI
Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7: 211-224. doi: 10.1016/S1074-5521(00)00091-0. PubMed: 10712928. PubMed DOI
Kurmayer R, Christiansen G, Gumpenberger M, Fastner J (2005) Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus PubMed DOI
Najmanová L, Kutejová E, Kadlec J, Polan M, Olšovská J et al. (2013) Characterization of N-demethyl lincosamide methyltransferases LmbJ and CcbJ ChemBioChem In press. doi: 10.1002/cbic.201300389. PubMed DOI
Magerlein BJ (1971) Modification of lincomycin. In: Perlman D. Structure-activity relationships among the semisynthetic antibiotics. New York: Academic Press; pp. 600-651.
Ulanova D, Novotná J, Smutná Y, Kameník Z, Gažák R et al. (2010) Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci. Antimicrob Agents Chemother 54: 927-930. doi: 10.1128/AAC.00918-09. PubMed: 19917754. PubMed DOI PMC
Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C et al. (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of PubMed DOI
Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150: 1629-1636. doi: 10.1099/mic.0.26837-0. PubMed: 15184549. PubMed DOI
Bushley KE, Ripoll DR, Turgeon BG (2008) Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. BMC Evol Biol 8: 328-. PubMed: 19055762. PubMed PMC
Yonus H, Neumann P, Zimmermann S, May JJ, Marahiel MA et al. (2008) Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J Biol Chem 283: 32484-32491. doi: 10.1074/jbc.M800557200. PubMed: 18784082. PubMed DOI
Crüsemann M, Kohlhaas C, Piel J (2013) Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chem Sci 4: 1041-1045. doi: 10.1039/c2sc21722h. DOI
Milo R, Last RL (2012) Achieving diversity in the face of constraints: Lessons from metabolism. Science 336: 1663-1667. doi: 10.1126/science.1217665. PubMed: 22745419. PubMed DOI
Liscombe DK, Louie GV, Noel JP (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 29: 1238-1250. doi: 10.1039/c2np20029e. PubMed: 22850796. PubMed DOI
Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci U S A 105: 4601-4608. doi: 10.1073/pnas.0709132105. PubMed: 18216259. PubMed DOI PMC
O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6: R91-R105. doi: 10.1016/S1074-5521(99)80021-0. PubMed: 10099128. PubMed DOI
Gerratana B (2012) Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med Res Rev 32: 254-293. doi: 10.1002/med.20212. PubMed: 20544978. PubMed DOI PMC
Kyselková M, Janata J, Ságová-Marečková M, Kopecký J (2010) Subunit-subunit interactions are weakened in mutant forms of acetohydroxy acid synthase insensitive to valine inhibition. Arch Microbiol 192: 195-200. doi: 10.1007/s00203-010-0545-0. PubMed: 20107768. PubMed DOI
Geneious version 5.5.6 created by Biomatters. Available from http://www.geneious.com/.
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30: 772-780. doi: 10.1093/molbev/mst010. PubMed: 23329690. PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. doi: 10.1093/molbev/msr121. PubMed: 21546353. PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. (2007) Clustal W and clustal X version 2.0. Bioinformatics 23: 2947-2948. doi: 10.1093/bioinformatics/btm404. PubMed: 17846036. PubMed DOI
Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31: 3381-3385. doi: 10.1093/nar/gkg520. PubMed: 12824332. PubMed DOI PMC
Schrödinger LLC (2010) The PyMOL molecular graphics system, version 1.3.
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668-1688. doi: 10.1002/jcc.20290. PubMed: 16200636. PubMed DOI PMC
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A et al. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65: 712-725. doi: 10.1002/prot.21123. PubMed: 16981200. PubMed DOI PMC
Popov AV, Vorobjev YN, Zharkov DO (2013) MDTRA: A molecular dynamics trajectory analyzer with a graphical user interface. J Comput Chem 34: 319-325. doi: 10.1002/jcc.23135. PubMed: 23047307. PubMed DOI
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid
Sequence analysis of porothramycin biosynthetic gene cluster