Deacetylation of mycothiol-derived 'waste product' triggers the last biosynthetic steps of lincosamide antibiotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28791100
PubMed Central
PMC5518657
DOI
10.1039/c5sc03327f
PII: c5sc03327f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The immediate post-condensation steps in lincomycin biosynthesis are reminiscent of the mycothiol-dependent detoxification system of actinomycetes. This machinery provides the last proven lincomycin intermediate, a mercapturic acid derivative, which formally represents the 'waste product' of the detoxification process. We identified and purified new lincomycin intermediates from the culture broth of deletion mutant strains of Streptomyces lincolnensis and tested these compounds as substrates for proteins putatively involved in lincomycin biosynthesis. The results, based on LC-MS, in-source collision-induced dissociation mass spectrometry and NMR analysis, revealed the final steps of lincomycin biosynthesis, i.e. conversion of the mercapturic acid derivative to lincomycin. Most importantly, we show that deacetylation of the N'-acetyl-S-cysteine residue of the mercapturic acid derivative is required to 'escape' the detoxification-like system and proceed towards completion of the biosynthetic pathway. Additionally, our results, supported by l-cysteine-13C3, 15N incorporation experiments, give evidence that a different type of reaction catalysed by the homologous pair of pyridoxal-5'-phosphate-dependent enzymes, LmbF and CcbF, forms the branch point in the biosynthesis of lincomycin and celesticetin, two related lincosamides.
Crop Research Institute Drnovska 507 Prague 6 Czech Republic
Institute of Microbiology ASCR Videnska 1083 Prague 4 Czech Republic Email
Zobrazit více v PubMed
Zhao Q. F., Wang M., Xu D. X., Zhang Q. L., Liu W. Nature. 2015;518:115. PubMed
Kadlcik S., Kucera T., Chalupska D., Gazak R., Koberska M., Ulanova D., Kopecky J., Kutejova E., Najmanova L., Janata J. PLoS One. 2013;8:e84902. PubMed PMC
Janata J., Kadlcik S., Koberska M., Ulanova D., Kamenik Z., Novak P., Kopecky J., Novotna J., Radojevic B., Plhackova K., Gazak R., Najmanova L. PLoS One. 2015;10:e0118850. PubMed PMC
Newton G. L., Av-Gay Y., Fahey R. C. Biochemistry. 2000;39:10739. PubMed
Newton G. L., Buchmeier N., Fahey R. C. Microbiol. Mol. Biol. Rev. 2008;72:471. PubMed PMC
Najmanova L., Kutejova E., Kadlec J., Polan M., Olsovska J., Benada O., Novotna J., Kamenik Z., Halada P., Bauer J., Janata J. ChemBioChem. 2013;14:2259. PubMed
Bauer J., Ondrovicova G., Najmanova L., Pevala V., Kamenik Z., Kostan J., Janata J., Kutejova E. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2014;70:943. PubMed
Brahme N. M., Gonzalez J. E., Rolls J. P., Hessler E. J., Mizsak S., Hurley L. H. J. Am. Chem. Soc. 1984;106:7873.
Novotna J., Olsovska J., Novak P., Mojzes P., Chaloupkova R., Kamenik Z., Spizek J., Kutejova E., Mareckova M., Tichy P., Damborsky J., Janata J. PLoS One. 2013;8:e79974. PubMed PMC
Sasaki E., Lin C. I., Lin K. Y., Liu H. W. J. Am. Chem. Soc. 2012;134:17432. PubMed PMC
Lin C. I., Sasaki E., Zhong A. S., Liu H. W. J. Am. Chem. Soc. 2014;136:906. PubMed PMC
Ming M., Lohman J. R., Liu T., Shen B. Proc. Natl. Acad. Sci. U. S. A. 2015;112:10359. PubMed PMC
Pang A.-P., Du L., Lin C.-Y., Qiao J., Zhao G.-R. J. Appl. Microbiol. 2015;119:1064. PubMed
Newton G. L., Fahey R. C. Arch. Microbiol. 2002;178:388. PubMed
Koberska M., Kopecky J., Olsovska J., Jelinkova M., Ulanova D., Man P., Flieger M., Janata J. Folia Microbiol. 2008;53:395. PubMed
John R. A. Biochim. Biophys. Acta. 1995;1248:81. PubMed
Bailey G. B., Dempsey W. B. Biochemistry. 1967;6:1526.
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid