Molecular basis for the diversification of lincosamide biosynthesis by pyridoxal phosphate-dependent enzymes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
JSPS KAKENHI Grant Number JP20H00490, JP22H05126, JP23H00393, and JP23H02641
Japan Society for the Promotion of Science London (JSPS London)
PubMed
39643667
PubMed Central
PMC11794154
DOI
10.1038/s41557-024-01687-7
PII: 10.1038/s41557-024-01687-7
Knihovny.cz E-zdroje
- MeSH
- katalytická doména MeSH
- krystalografie rentgenová MeSH
- linkosamidy * chemie biosyntéza metabolismus MeSH
- pyridoxalfosfát * metabolismus chemie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- linkosamidy * MeSH
- pyridoxalfosfát * MeSH
The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
FOREST Japan Science and Technology Agency Saitama Japan
Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo Japan
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Medical Research Laboratory Institute of Science Tokyo Tokyo Japan
Zobrazit více v PubMed
Mason, D. J. & Lewis, C. Biological activity of the lincomycin-related antibiotics. Antimicrob. Agents Chemother.10, 7–12 (1964). PubMed
Owen, S. P., Bhuyan, B. K. & Kupiecki, F. P. Discovery and biological properties of cis-β-carboxyacrylamidine, a new cytotoxic agent. Antimicrob. Agents Chemother.5, 808–811 (1965). PubMed
Hoeksema, H. & Celesticetin, V. The structure of celesticetin. J. Am. Chem. Soc.90, 755–757 (1968). PubMed
Hanada, M., Tsunakawa, M., Tomita, K., Tsukiura, H. & Kawaguchi, H. Antibiotic Bu-2545, a new member of the celesticetin-lincomycin class. J. Antibiot.33, 751–753 (1980). PubMed
Lin, C. I., McCarty, R. M. & Liu, H. W. The biosynthesis of nitrogen-, sulfur- and high-carbon chain-containing sugars. Chem. Soc. Rev.42, 4377–4407 (2013). PubMed PMC
Janata, J. et al. Lincosamide synthetase—a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS ONE10, e0118850 (2015). PubMed PMC
Spizek, J. & Rezanka, T. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance and applications. Biochem. Pharmacol.133, 20–28 (2017). PubMed
Zhang, D., Tang, Z. & Liu, W. Biosynthesis of lincosamide antibiotics: reactions associated with degradation and detoxification pathways play a constructive role. Acc. Chem. Res.51, 1496–1506 (2018). PubMed
Schlünzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature413, 814–821 (2001). PubMed
Tenson, T. & Ehrenberg, M. Regulatory nascent peptides in the ribosomal tunnel. Cell108, 591–594 (2002). PubMed
Hoeksema, H. et al. Chemical studies on lincomycin. I. The structure of lincomycin. J. Am. Chem. Soc.86, 4223–4224 (1964).
Janata, J., Kamenik, Z., Gazak, R., Kadlcik, S. & Najmanova, L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat. Prod. Rep.35, 257–289 (2018). PubMed
Kadlcik, S., Kamenik, Z., Vasek, D., Nedved, M. & Janata, J. Elucidation of salicylate attachment in celesticetin biosynthesis opens the door to create a library of more efficient hybrid lincosamide antibiotics. Chem. Sci.8, 3349–3355 (2017). PubMed PMC
Zhao, Q., Wang, M., Xu, D., Zhang, Q. & Liu, W. Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature518, 115–119 (2015). PubMed
Wang, M., Zhao, Q., Zhang, Q. & Liu, W. Differences in PLP-dependent cysteinyl processing lead to diverse S-functionalization of lincosamide antibiotics. J. Am. Chem. Soc.138, 6348–6351 (2016). PubMed
Ushimaru, R., Lin, C.-I., Sasaki, E. & Liu, H.-W. Characterization of enzymes catalyzing transformations of cysteine S-conjugated intermediates in the lincosamide biosynthetic pathway. ChemBioChem17, 1606–1611 (2016). PubMed PMC
Kamenik, Z. et al. Deacetylation of mycothiol-derived ‘waste product’ triggers the last biosynthetic steps of lincosamide antibiotics. Chem. Sci.7, 430–435 (2016). PubMed PMC
Wang, S. A. et al. Studies of lincosamide formation complete the biosynthetic pathway for lincomycin A. Proc. Natl Acad. Sci. USA117, 24794–24801 (2020). PubMed PMC
Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J.287, 1403–1428 (2020). PubMed
Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural and evolutionary considerations. Annu. Rev. Biochem.73, 383–415 (2004). PubMed
Dunathan, H. C. Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc. Natl Acad. Sci. USA55, 712–716 (1966). PubMed PMC
Toney, M. D. Reaction specificity in pyridoxal phosphate enzymes. Arch. Biochem. Biophys.433, 279–287 (2005). PubMed
Du, Y. L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep.36, 430–457 (2019). PubMed
Torrens-Spence, M. P. et al. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J. Biol. Chem.288, 2376–2387 (2013). PubMed PMC
Torrens-Spence, M. P. et al. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc. Natl Acad. Sci. USA117, 10806–10817 (2020). PubMed PMC
Liang, J., Han, Q., Ding, H. & Li, J. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions. Insect Biochem. Mol. Biol.91, 34–43 (2017). PubMed
Vavricka, C. J. et al. Mechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nat. Commun.10, 2015 (2019). PubMed PMC
Chun, S. W. & Narayan, A. R. H. Biocatalytic, stereoselective deuteration of α-amino acids and methyl esters. ACS Catal.10, 7413–7418 (2020). PubMed PMC
John, R. A. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta1248, 81–96 (1995). PubMed
Walsh, C. T. & Tang, Y. The Chemical Biology of Human Vitamins (Royal Society of Chemistry, 2018).
Barra, L. et al. β-NAD as a building block in natural product biosynthesis. Nature600, 754–758 (2021). PubMed
Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal.6, 476–486 (2023). PubMed PMC
Ringel, M. T., Dräger, G. & Brüser, T. PvdN enzyme catalyzes a periplasmic pyoverdine modification. J. Biol. Chem.291, 23929–23938 (2016). PubMed PMC
Huang, Y. et al. Pyridoxal-5′-phosphate as an oxygenase cofactor: discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proc. Natl Acad. Sci. USA115, 974–979 (2018). PubMed PMC
Liu, S. et al. Molecular and structural basis for Cγ–C bond formation by PLP-dependent enzyme Fub7. Angew. Chem. Int. Ed.63, e202317161 (2024). PubMed PMC
Steffen-Munsberg, F. et al. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol. Adv.33, 566–604 (2015). PubMed
Rocha, J. F., Pina, A. F., Sousa, S. F. & Cerqueira, N. M. F. S. A. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal. Sci. Technol.9, 4864–4876 (2019).
Chen, M., Liu, C.-T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc.142, 10506–10515 (2020). PubMed PMC
Clausen, T., Huber, R., Messerschmidt, A., Pohlenz, H.-D. & Laber, B. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by l-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemistry36, 12633–12643 (1997). PubMed
Matoba, Y. et al. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci. Rep.10, 14886 (2020). PubMed PMC
Irani, S. et al. Snapshots of C-S cleavage in Egt2 reveals substrate specificity and reaction mechanism. Cell Chem. Biol.25, 519–529 (2018). PubMed PMC
Song, H. et al. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci. Rep.5, 11870 (2015). PubMed PMC
Meng, S. et al. Thiocysteine lyases as polyketide synthase domains installing hydropersulfide into natural products and a hydropersulfide methyltransferase. Nat. Commun.12, 5672 (2021). PubMed PMC
Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J. N. & Malashkevich, V. N. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nat. Struct. Biol.8, 963–967 (2001). PubMed
Chellam Gayathri, S. & Manoj, N. Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase. J. Struct. Biol.208, 137–151 (2019). PubMed
Han, L. et al. Streptomyces wadayamensis MppP is a PLP-dependent oxidase, not an oxygenase. Biochemistry57, 3252–3264 (2018). PubMed
Du, Y. L. et al. A pyridoxal phosphate-dependent enzyme that oxidizes an unactivated carbon–carbon bond. Nat. Chem. Biol.12, 194–199 (2016). PubMed
Hoffarth, E. R. et al. A shared mechanistic pathway for pyridoxal phosphate-dependent arginine oxidases. Proc. Natl Acad. Sci. USA118, e2012591118 (2021). PubMed PMC
Cai, W. et al. The biosynthesis of capuramycin-type antibiotics: identification of the A-102395 biosynthetic gene cluster, mechanism of self-resistance and formation of uridine-5′-carboxamide. J. Biol. Chem.290, 13710–13724 (2015). PubMed PMC
Drake, E. J. & Gulick, A. M. 1.2 Å resolution crystal structure of the periplasmic aminotransferase PvdN from Pseudomonas aeruginosa. Acta Crystallogr. F72, 403–408 (2016). PubMed PMC
Daniel-Ivad, P. G., Van Lanen, S. & Ryan, K. S. Structure of the oxygen, pyridoxal phosphate-dependent capuramycin biosynthetic protein Cap15. Biochemistry62, 2611–2621 (2023). PubMed
Kabsch, W. XDS. Acta Crystallogr. D66, 125–132 (2010). PubMed PMC
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D69, 1204–1214 (2013). PubMed PMC
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). PubMed PMC
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). PubMed PMC
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010). PubMed PMC
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004). PubMed
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D68, 352–367 (2012). PubMed PMC
Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res.38, W545–W549 (2010). PubMed PMC
Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field and Python bindings. J. Chem. Inf. Model.61, 3891–3898 (2021). PubMed PMC
Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, 2016).
Becke, A. D. A new mixing of Hartree-Fock and local density‐functional theories. J. Chem. Phys.98, 1372–1377 (1993).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.98, 5648–5652 (1993).
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988). PubMed
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem.98, 11623–11627 (1994).
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model.25, 247–260 (2006). PubMed
Case, D. A. et al. AMBER 22 (Univ. California, 2022).
He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys.153, 114502 (2020). PubMed PMC
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett.5, 3863–3871 (2014). PubMed PMC
Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem.26, 1668–1688 (2005). PubMed PMC
Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput.16, 528–552 (2020). PubMed
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys.103, 8577–8593 (1995).
Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys.23, 327–341 (1977).
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81, 3684–3690 (1984).
Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput.9, 3878–3888 (2013). PubMed
Roe, D. R. & Cheatham, T. E. III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput.9, 3084–3095 (2013). PubMed
Mori, T. et al. The MSA files in a3m format and predicted LmbF and CcbF models using the MSAs in pdb format. Zenodo10.5281/zenodo.13309462 (2024).