Molecular basis for the diversification of lincosamide biosynthesis by pyridoxal phosphate-dependent enzymes

. 2025 Feb ; 17 (2) : 256-264. [epub] 20241206

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39643667

Grantová podpora
JSPS KAKENHI Grant Number JP20H00490, JP22H05126, JP23H00393, and JP23H02641 Japan Society for the Promotion of Science London (JSPS London)

Odkazy

PubMed 39643667
PubMed Central PMC11794154
DOI 10.1038/s41557-024-01687-7
PII: 10.1038/s41557-024-01687-7
Knihovny.cz E-zdroje

The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.

Zobrazit více v PubMed

Mason, D. J. & Lewis, C. Biological activity of the lincomycin-related antibiotics. Antimicrob. Agents Chemother.10, 7–12 (1964). PubMed

Owen, S. P., Bhuyan, B. K. & Kupiecki, F. P. Discovery and biological properties of cis-β-carboxyacrylamidine, a new cytotoxic agent. Antimicrob. Agents Chemother.5, 808–811 (1965). PubMed

Hoeksema, H. & Celesticetin, V. The structure of celesticetin. J. Am. Chem. Soc.90, 755–757 (1968). PubMed

Hanada, M., Tsunakawa, M., Tomita, K., Tsukiura, H. & Kawaguchi, H. Antibiotic Bu-2545, a new member of the celesticetin-lincomycin class. J. Antibiot.33, 751–753 (1980). PubMed

Lin, C. I., McCarty, R. M. & Liu, H. W. The biosynthesis of nitrogen-, sulfur- and high-carbon chain-containing sugars. Chem. Soc. Rev.42, 4377–4407 (2013). PubMed PMC

Janata, J. et al. Lincosamide synthetase—a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS ONE10, e0118850 (2015). PubMed PMC

Spizek, J. & Rezanka, T. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance and applications. Biochem. Pharmacol.133, 20–28 (2017). PubMed

Zhang, D., Tang, Z. & Liu, W. Biosynthesis of lincosamide antibiotics: reactions associated with degradation and detoxification pathways play a constructive role. Acc. Chem. Res.51, 1496–1506 (2018). PubMed

Schlünzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature413, 814–821 (2001). PubMed

Tenson, T. & Ehrenberg, M. Regulatory nascent peptides in the ribosomal tunnel. Cell108, 591–594 (2002). PubMed

Hoeksema, H. et al. Chemical studies on lincomycin. I. The structure of lincomycin. J. Am. Chem. Soc.86, 4223–4224 (1964).

Janata, J., Kamenik, Z., Gazak, R., Kadlcik, S. & Najmanova, L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat. Prod. Rep.35, 257–289 (2018). PubMed

Kadlcik, S., Kamenik, Z., Vasek, D., Nedved, M. & Janata, J. Elucidation of salicylate attachment in celesticetin biosynthesis opens the door to create a library of more efficient hybrid lincosamide antibiotics. Chem. Sci.8, 3349–3355 (2017). PubMed PMC

Zhao, Q., Wang, M., Xu, D., Zhang, Q. & Liu, W. Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature518, 115–119 (2015). PubMed

Wang, M., Zhao, Q., Zhang, Q. & Liu, W. Differences in PLP-dependent cysteinyl processing lead to diverse S-functionalization of lincosamide antibiotics. J. Am. Chem. Soc.138, 6348–6351 (2016). PubMed

Ushimaru, R., Lin, C.-I., Sasaki, E. & Liu, H.-W. Characterization of enzymes catalyzing transformations of cysteine S-conjugated intermediates in the lincosamide biosynthetic pathway. ChemBioChem17, 1606–1611 (2016). PubMed PMC

Kamenik, Z. et al. Deacetylation of mycothiol-derived ‘waste product’ triggers the last biosynthetic steps of lincosamide antibiotics. Chem. Sci.7, 430–435 (2016). PubMed PMC

Wang, S. A. et al. Studies of lincosamide formation complete the biosynthetic pathway for lincomycin A. Proc. Natl Acad. Sci. USA117, 24794–24801 (2020). PubMed PMC

Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J.287, 1403–1428 (2020). PubMed

Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural and evolutionary considerations. Annu. Rev. Biochem.73, 383–415 (2004). PubMed

Dunathan, H. C. Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc. Natl Acad. Sci. USA55, 712–716 (1966). PubMed PMC

Toney, M. D. Reaction specificity in pyridoxal phosphate enzymes. Arch. Biochem. Biophys.433, 279–287 (2005). PubMed

Du, Y. L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep.36, 430–457 (2019). PubMed

Torrens-Spence, M. P. et al. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J. Biol. Chem.288, 2376–2387 (2013). PubMed PMC

Torrens-Spence, M. P. et al. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc. Natl Acad. Sci. USA117, 10806–10817 (2020). PubMed PMC

Liang, J., Han, Q., Ding, H. & Li, J. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions. Insect Biochem. Mol. Biol.91, 34–43 (2017). PubMed

Vavricka, C. J. et al. Mechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nat. Commun.10, 2015 (2019). PubMed PMC

Chun, S. W. & Narayan, A. R. H. Biocatalytic, stereoselective deuteration of α-amino acids and methyl esters. ACS Catal.10, 7413–7418 (2020). PubMed PMC

John, R. A. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta1248, 81–96 (1995). PubMed

Walsh, C. T. & Tang, Y. The Chemical Biology of Human Vitamins (Royal Society of Chemistry, 2018).

Barra, L. et al. β-NAD as a building block in natural product biosynthesis. Nature600, 754–758 (2021). PubMed

Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal.6, 476–486 (2023). PubMed PMC

Ringel, M. T., Dräger, G. & Brüser, T. PvdN enzyme catalyzes a periplasmic pyoverdine modification. J. Biol. Chem.291, 23929–23938 (2016). PubMed PMC

Huang, Y. et al. Pyridoxal-5′-phosphate as an oxygenase cofactor: discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proc. Natl Acad. Sci. USA115, 974–979 (2018). PubMed PMC

Liu, S. et al. Molecular and structural basis for Cγ–C bond formation by PLP-dependent enzyme Fub7. Angew. Chem. Int. Ed.63, e202317161 (2024). PubMed PMC

Steffen-Munsberg, F. et al. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol. Adv.33, 566–604 (2015). PubMed

Rocha, J. F., Pina, A. F., Sousa, S. F. & Cerqueira, N. M. F. S. A. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal. Sci. Technol.9, 4864–4876 (2019).

Chen, M., Liu, C.-T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc.142, 10506–10515 (2020). PubMed PMC

Clausen, T., Huber, R., Messerschmidt, A., Pohlenz, H.-D. & Laber, B. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by l-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemistry36, 12633–12643 (1997). PubMed

Matoba, Y. et al. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci. Rep.10, 14886 (2020). PubMed PMC

Irani, S. et al. Snapshots of C-S cleavage in Egt2 reveals substrate specificity and reaction mechanism. Cell Chem. Biol.25, 519–529 (2018). PubMed PMC

Song, H. et al. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci. Rep.5, 11870 (2015). PubMed PMC

Meng, S. et al. Thiocysteine lyases as polyketide synthase domains installing hydropersulfide into natural products and a hydropersulfide methyltransferase. Nat. Commun.12, 5672 (2021). PubMed PMC

Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J. N. & Malashkevich, V. N. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nat. Struct. Biol.8, 963–967 (2001). PubMed

Chellam Gayathri, S. & Manoj, N. Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase. J. Struct. Biol.208, 137–151 (2019). PubMed

Han, L. et al. Streptomyces wadayamensis MppP is a PLP-dependent oxidase, not an oxygenase. Biochemistry57, 3252–3264 (2018). PubMed

Du, Y. L. et al. A pyridoxal phosphate-dependent enzyme that oxidizes an unactivated carbon–carbon bond. Nat. Chem. Biol.12, 194–199 (2016). PubMed

Hoffarth, E. R. et al. A shared mechanistic pathway for pyridoxal phosphate-dependent arginine oxidases. Proc. Natl Acad. Sci. USA118, e2012591118 (2021). PubMed PMC

Cai, W. et al. The biosynthesis of capuramycin-type antibiotics: identification of the A-102395 biosynthetic gene cluster, mechanism of self-resistance and formation of uridine-5′-carboxamide. J. Biol. Chem.290, 13710–13724 (2015). PubMed PMC

Drake, E. J. & Gulick, A. M. 1.2 Å resolution crystal structure of the periplasmic aminotransferase PvdN from Pseudomonas aeruginosa. Acta Crystallogr. F72, 403–408 (2016). PubMed PMC

Daniel-Ivad, P. G., Van Lanen, S. & Ryan, K. S. Structure of the oxygen, pyridoxal phosphate-dependent capuramycin biosynthetic protein Cap15. Biochemistry62, 2611–2621 (2023). PubMed

Kabsch, W. XDS. Acta Crystallogr. D66, 125–132 (2010). PubMed PMC

Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D69, 1204–1214 (2013). PubMed PMC

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). PubMed PMC

McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). PubMed PMC

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010). PubMed PMC

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004). PubMed

Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D68, 352–367 (2012). PubMed PMC

Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res.38, W545–W549 (2010). PubMed PMC

Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field and Python bindings. J. Chem. Inf. Model.61, 3891–3898 (2021). PubMed PMC

Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, 2016).

Becke, A. D. A new mixing of Hartree-Fock and local density‐functional theories. J. Chem. Phys.98, 1372–1377 (1993).

Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.98, 5648–5652 (1993).

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988). PubMed

Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem.98, 11623–11627 (1994).

Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model.25, 247–260 (2006). PubMed

Case, D. A. et al. AMBER 22 (Univ. California, 2022).

He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys.153, 114502 (2020). PubMed PMC

Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett.5, 3863–3871 (2014). PubMed PMC

Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem.26, 1668–1688 (2005). PubMed PMC

Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput.16, 528–552 (2020). PubMed

Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys.103, 8577–8593 (1995).

Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys.23, 327–341 (1977).

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81, 3684–3690 (1984).

Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput.9, 3878–3888 (2013). PubMed

Roe, D. R. & Cheatham, T. E. III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput.9, 3084–3095 (2013). PubMed

Mori, T. et al. The MSA files in a3m format and predicted LmbF and CcbF models using the MSAs in pdb format. Zenodo10.5281/zenodo.13309462 (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...