Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, fáze III, srovnávací studie, časopisecké články, randomizované kontrolované studie, práce podpořená grantem
Grantová podpora
MR/L01629X/1
Medical Research Council - United Kingdom
C2470/A14261
Cancer Research UK - United Kingdom
C2470/A12136
Cancer Research UK - United Kingdom
C2470/A17761
Cancer Research UK - United Kingdom
PubMed
26282654
PubMed Central
PMC6485456
DOI
10.1200/jco.2014.59.1503
PII: JCO.2014.59.1503
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- dospělí MeSH
- genetická predispozice k nemoci epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mnohočetný myelom genetika mortalita patofyziologie MeSH
- multivariační analýza MeSH
- mutační analýza DNA MeSH
- proporcionální rizikové modely MeSH
- prospektivní studie MeSH
- Ras proteiny genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
- Geografické názvy
- Spojené království MeSH
- Názvy látek
- Ras proteiny MeSH
PURPOSE: At the molecular level, myeloma is characterized by copy number abnormalities and recurrent translocations into the immunoglobulin heavy chain locus. Novel methods, such as massively parallel sequencing, have begun to describe the pattern of tumor-acquired mutations, but their clinical relevance has yet to be established. METHODS: We performed whole-exome sequencing for 463 patients who presented with myeloma and were enrolled onto the National Cancer Research Institute Myeloma XI trial, for whom complete molecular cytogenetic and clinical outcome data were available. RESULTS: We identified 15 significantly mutated genes: IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD, and FGFR3. The mutational spectrum is dominated by mutations in the RAS (43%) and nuclear factor-κB (17%) pathways, but although they are prognostically neutral, they could be targeted therapeutically. Mutations in CCND1 and DNA repair pathway alterations (TP53, ATM, ATR, and ZNFHX4 mutations) are associated with a negative impact on survival. In contrast, those in IRF4 and EGR1 are associated with a favorable overall survival. We combined these novel mutation risk factors with the recurrent molecular adverse features and international staging system to generate an international staging system mutation score that can identify a high-risk population of patients who experience relapse and die prematurely. CONCLUSION: We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation.
Zobrazit více v PubMed
Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12:335–48. PubMed
Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26:349–55. PubMed PMC
Avet-Loiseau H, Durie BG, Cavo M, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project. Leukemia. 2013;27:711–7. PubMed PMC
Klein U, Jauch A, Hielscher T, et al. Chromosomal aberrations +1q21 and del(17p13) predict survival in patients with recurrent multiple myeloma treated with lenalidomide and dexamethasone. Cancer. 2011;117:2136–44. PubMed
Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412–20. PubMed
Walker BA, Wardell CP, Johnson DC, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013;121:3413–9. PubMed
Ross FM, Avet-Loiseau H, Ameye G, et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012;97:1272–7. PubMed PMC
Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–95. PubMed
Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27:4585–90. PubMed PMC
Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575. PubMed
Walker BA, Wardell CP, Brioli A, et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 2014;4:e191. PubMed PMC
Jenner MW, Leone PE, Walker BA, et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood. 2007;110:3291–300. PubMed
Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101. PubMed PMC
Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72. PubMed PMC
Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. PubMed PMC
Kozarewa I, Rosa-Rosa JM, Wardell CP, et al. A modified method for whole exome resequencing from minimal amounts of starting DNA. PLoS ONE. 2012;7:e32617. PubMed PMC
Boeva V, Popova T, Bleakley K, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28:423–5. PubMed PMC
Rausch T, Zichner T, Schlattl A, et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–i339. PubMed PMC
Kaiser MF, Walker BA, Hockley SL, et al. A TC classification-based predictor for multiple myeloma using multiplexed real-time quantitative PCR. Leukemia. 2013;27:1754–7. PubMed
Alpar D, de Jong D, Holczer-Nagy Z, et al. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization are complementary techniques to detect cytogenetic abnormalities in multiple myeloma. Genes Chromosomes Cancer. 2013;52:785–93. PubMed
Schwab CJ, Jones LR, Morrison H, et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:1104–13. PubMed
Boyle EM, Proszek P, Kaiser M, et al. A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma. submitted. PubMed PMC
JAGS 3.4.0. Just Another Gibbs Sampler: (ed JAGS 3.4.0.) 2013.
Nuijten M, Wetzels R, Matzke D, Dolan CV, Wagenmakers EJ. Default Bayesian hypothesis tests for correlation, partial correlation, and mediation, (ed 1.0) 2014. PubMed
Wetzels R, Wagenmakers EJ. A default Bayesian hypothesis test for correlations and partial correlations. Psychon Bull Rev. 2012;19:1057–64. PubMed PMC
Kass R, Raferty A. Bayes Factors. Journal of the American Statistical Association. 1995;90:773–795.
Wei T. Corrplot: Visualization of a correlation matrix. 2013.
R development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Foundation for statistical Computing; Vienna, Austria: 2013.
Therneau T, Grambsch P. Modeling Survival Data: Extending the Cox Model. Springer; New York: 2000.
Therneau T. A Package for Survival Analysis in S, (ed R package version 2.37-7) 2014.
Hothorn T, Hornik K, van de Wiel M, et al. Implementing a Class of Permutation Tests: The {coin} Package. Journal of Statistical Software. 2008;28:1–23. PubMed
Hothorn T, Hornik K, van de Wiel M, et al. A Lego System for Conditional Inference. The American Statistician. 2006;60:257–263.
Qiu Weiliang, C J, Lazarus Ross, Rosner Bernard, Jing Ma. powerSurvEpi: Power and sample size calculation for survival analysis of epidemiological studies, (ed 0.0.6) 2012.
Harrell FE. REGRESSION MODELING STRATEGIES with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer; 2001.
Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–30. PubMed PMC
Chen L, Wang S, Zhou Y, et al. Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood. 2010;115:61–70. PubMed PMC
Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95:1973–6. PubMed PMC
Skowronska A, Austen B, Powell JE, et al. ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but influences rapid disease progression through loss of the remaining ATM allele. Haematologica. 2012;97:142–6. PubMed PMC
Guarini A, Marinelli M, Tavolaro S, et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica. 2012;97:47–55. PubMed PMC
Fang NY, Greiner TC, Weisenburger DD, et al. Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc Natl Acad Sci U S A. 2003;100:5372–7. PubMed PMC
Meier M, den Boer ML, Hall AG, et al. Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia. Leukemia. 2005;19:1887–95. PubMed
Austen B, Barone G, Reiman A, et al. Pathogenic ATM mutations occur rarely in a subset of multiple myeloma patients. Br J Haematol. 2008;142:925–33. PubMed
Zighelboim I, Schmidt AP, Gao F, et al. ATR mutation in endometrioid endometrial cancer is associated with poor clinical outcomes. J Clin Oncol. 2009;27:3091–6. PubMed PMC
Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6. PubMed
Mu JJ, Wang Y, Luo H, et al. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem. 2007;282:17330–4. PubMed
Chudnovsky Y, Kim D, Zheng S, et al. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep. 2014;6:313–24. PubMed PMC
Zhu YX, Braggio E, Shi CX, et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood. 2014;124:536–45. PubMed PMC
Boone DN, Qi Y, Li Z, et al. Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci U S A. 2011;108:632–7. PubMed PMC
Wirth M, Stojanovic N, Christian J, et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 2014 PubMed PMC
Joslin JM, Fernald AA, Tennant TR, et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood. 2007;110:719–26. PubMed PMC
Mulligan G, Lichter DI, Di Bacco A, et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood. 2014;123:632–9. PubMed PMC
Takahashi N, Yamada Y, Taniguchi H, et al. Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer. BMC Res Notes. 2014;7:271. PubMed PMC
Bruce S, Leinonen R, Lindgren CM, et al. Global analysis of uniparental disomy using high density genotyping arrays. J.Med.Genet. 2005;42:847–851. PubMed PMC
Epidemiology, genetics and treatment of multiple myeloma and precursor diseases
ClinicalTrials.gov
NCT01554852