Epidemiology, genetics and treatment of multiple myeloma and precursor diseases

. 2021 Dec 15 ; 149 (12) : 1980-1996. [epub] 20210830

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34398972

Grantová podpora
C1298/A8362 Cancer Research UK (C1298/A8362)

Multiple myeloma (MM) is a hematological malignancy caused by the clonal expansion of plasma cells. The incidence of MM worldwide is increasing with greater than 140 000 people being diagnosed with MM per year. Whereas 5-year survival after a diagnosis of MM has improved from 28% in 1975 to 56% in 2012, the disease remains essentially incurable. In this review, we summarize our current understanding of MM including its epidemiology, genetics and biology. We will also provide an overview of MM management that has led to improvements in survival, including recent changes to diagnosis and therapies. Areas of unmet need include the management of patients with high-risk MM, those with reduced performance status and those refractory to standard therapies. Ongoing research into the biology and early detection of MM as well as the development of novel therapies, such as immunotherapies, has the potential to influence MM practice in the future.

Zobrazit více v PubMed

Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375‐2390. PubMed PMC

Sud A, Chattopadhyay S, Thomsen H, et al. Analysis of 153,115 patients with hematological malignancies refines the spectrum of familial risk. Blood. 2019;134:960‐969. PubMed PMC

Smittenaar CR, Petersen KA, Stewart K, Moitt N. Cancer incidence and mortality projections in the UK until 2035. Br J Cancer. 2016;115:1147‐1155. PubMed PMC

Cowan AJ, Allen C, Barac A, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 2018;4:1221‐1227. PubMed PMC

Kyle RA, Steensma DP. History of multiple myeloma. Recent Results Cancer Res. 2011;183:3‐23. PubMed

Solly S. Remarks on the pathology of mollities ossium with cases. Med Chir Trans. 1844;27:435‐98.8. PubMed PMC

Rustizky JV. Multiples myelom. Deut Z Chirurg. 1873;3:162‐172.

Kahler O. Zur symptomalogii des multiple myleoms: beobachtung von albomosurie. Prag Med Wochenschr. 1889;14:45.

Jones HB III. On a new substance occurring in the urine of a patient with mollities ossium. Phil Trans R Soc Lond. 1848;138:55‐62.

Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111:2962‐2972. PubMed PMC

Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78:21‐33. PubMed

Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum‐free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215‐224. PubMed

Bradwell AR, Carr‐Smith HD, Mead GP, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem. 2001;47:673‐680. PubMed

Murray DL, Puig N, Kristinsson S, et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group mass spectrometry committee report. Blood Cancer J. 2021;11:24. PubMed PMC

Merlini G, Palladini G. Differential diagnosis of monoclonal gammopathy of undetermined significance. Hematology. 2012;2012:595‐603. PubMed

van Nieuwenhuijzen N, Spaan I, Raymakers R, Peperzak V. From MGUS to multiple myeloma, a paradigm for clonal evolution of premalignant cells. Cancer Res. 2018;78:2449‐2456. PubMed

Kyle RA, Larson DR, Therneau TM, et al. Long‐term follow‐up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378:241‐249. PubMed PMC

Wadhera RK, Rajkumar SV. Prevalence of monoclonal gammopathy of undetermined significance: a systematic review. Mayo Clin Proc. 2010;85:933‐942. PubMed PMC

Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538‐e548. PubMed

Terpos E, Zamagni E, Lentzsch S, et al. Treatment of multiple myeloma‐related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021;22:e119‐e130. PubMed

Hillengass J, Usmani S, Rajkumar SV, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20:e302‐e312. PubMed

Hillengass J, Moulopoulos LA, Delorme S, et al. Whole‐body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J. 2017;7:e599. PubMed PMC

Bartl R, Frisch B, Burkhardt R, et al. Bone marrow histology in myeloma: its importance in diagnosis, prognosis, classification and staging. Br J Haematol. 1982;51:361‐375. PubMed

Chilosi M, Adami F, Lestani M, et al. CD138/syndecan‐1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol. 1999;12:1101‐1106. PubMed

Morice WG, Hanson CA, Kumar S, Frederick LA, Lesnick CE, Greipp PR. Novel multi‐parameter flow cytometry sensitively detects phenotypically distinct plasma cell subsets in plasma cell proliferative disorders. Leukemia. 2007;21:2043‐2046. PubMed

Rawstron AC, Orfao A, Beksac M, et al. Report of the European myeloma network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93:431‐438. PubMed

Sonneveld P, Avet‐Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high‐risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127:2955‐2962. PubMed PMC

Mateos M‐V, Hernández M‐T, Giraldo P, et al. Lenalidomide plus dexamethasone for high‐risk smoldering multiple myeloma. N Engl J Med. 2013;369:438‐447. PubMed

Oben B, Froyen G, Maclachlan KH, et al. Whole‐genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nat Commun. 2021;12:1861. PubMed PMC

Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412‐3420. PubMed

Palumbo A, Avet‐Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33:2863‐2869. PubMed PMC

Shah V, Sherborne AL, Johnson DC, et al. Predicting ultrahigh risk multiple myeloma by molecular profiling: an analysis of newly diagnosed transplant eligible myeloma XI trial patients. Leukemia. 2020;34:3091‐3096. PubMed PMC

Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604‐2616. PubMed PMC

Walker BA, Mavrommatis K, Wardell CP, et al. A high‐risk, double‐hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33:159‐170. PubMed PMC

Tan D, Chng WJ, Chou T, et al. Management of multiple myeloma in Asia: resource‐stratified guidelines. Lancet Oncol. 2013;14:e571‐e581. PubMed

Keykhaei M, Masinaei M, Mohammadi E, et al. A global, regional, and national survey on burden and quality of care index (QCI) of hematologic malignancies; global burden of disease systematic analysis 1990‐2017. Exp Hematol Oncol. 2021;10:11. PubMed PMC

Kyle RA, Rajkumar SV. Epidemiology of the plasma‐cell disorders. Best Pract Res Clin Haematol. 2007;20:637‐664. PubMed

Went M, Cornish AJ, Law PJ, et al. Search for multiple myeloma risk factors using Mendelian randomization. Blood Adv. 2020;4:2172‐2179. PubMed PMC

Landgren O, Shim YK, Michalek J, et al. Agent Orange exposure and monoclonal Gammopathy of undetermined significance: an operation ranch hand veteran cohort study. JAMA Oncol. 2015;1:1061‐1068. PubMed PMC

Wang W, Shim YK, Michalek JE, et al. Serum microRNA profiles among dioxin exposed veterans with monoclonal gammopathy of undetermined significance. J Toxicol Environ Health A. 2020;83:269‐278. PubMed PMC

Landgren O, Kyle RA, Hoppin JA, et al. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the agricultural health study. Blood. 2009;113:6386‐6391. PubMed PMC

Hofmann JN, Beane Freeman LE, Murata K, et al. Lifetime pesticide use and monoclonal Gammopathy of undetermined significance in a prospective cohort of male farmers. Environ Health Perspect. 2021;129:17003. PubMed PMC

Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer—follow‐up of 15 million people in five Nordic countries. Acta Oncol. 2009;48:646‐790. PubMed

Landgren O, Zeig‐Owens R, Giricz O, et al. Multiple myeloma and its precursor disease among firefighters exposed to the world trade center disaster. JAMA Oncol. 2018;4:821‐827. PubMed PMC

Pukkala E, Martinsen JI, Weiderpass E, et al. Cancer incidence among firefighters: 45 years of follow‐up in five Nordic countries. Occup Environ Med. 2014;71:398‐404. PubMed

Hemminki K, Försti A, Tuuminen R, et al. The incidence of senile cataract and glaucoma is increased in patients with plasma cell dyscrasias: etiologic implications. Sci Rep. 2016;6:28500. PubMed PMC

Petrash JM. Aging and age‐related diseases of the ocular lens and vitreous body. Invest Ophthalmol Vis Sci. 2013;54:Orsf54‐9. PubMed PMC

Lindqvist EK, Goldin LR, Landgren O, et al. Personal and family history of immune‐related conditions increase the risk of plasma cell disorders: a population‐based study. Blood. 2011;118:6284‐6291. PubMed PMC

Hemminki K, Li X. Level of education and the risk of cancer in Sweden. Cancer Epidemiol Biomarkers Prev. 2003;12:796‐802. PubMed

Hemminki K, Zhang H, Czene K. Socioeconomic factors in cancer in Sweden. Int J Cancer. 2003;105:692‐700. PubMed

IARC . Personal habits and indoor combustions. Vol 100E. Lyon: International Agency for Research on Cancer; 2012:575.

Went M, Sud A, Law PJ, et al. Assessing the effect of obesity‐related traits on multiple myeloma using a Mendelian randomisation approach. Blood Cancer J. 2017;7:e573. PubMed PMC

Hsu WL, Preston DL, Soda M, et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950‐2001. Radiat Res. 2013;179:361‐382. PubMed PMC

Marinac CR, Ghobrial IM, Birmann BM, Soiffer J, Rebbeck TR. Dissecting racial disparities in multiple myeloma. Blood Cancer J. 2020;10:19. PubMed PMC

Altieri A, Chen B, Bermejo JL, Castro F, Hemminki K. Familial risks and temporal incidence trends of multiple myeloma. Eur J Cancer. 2006;42:1661‐1670. PubMed

Landgren O, Linet MS, McMaster ML, Gridley G, Hemminki K, Goldin LR. Familial characteristics of autoimmune and hematologic disorders in 8,406 multiple myeloma patients: a population‐based case‐control study. Int J Cancer. 2006;118:3095‐3098. PubMed

Hemminki K, Li X, Czene K. Familial risk of cancer: data for clinical counseling and cancer genetics. Int J Cancer. 2004;108:109‐114. PubMed

Kristinsson SY, Goldin LR, Bjorkholm M, Turesson I, Landgren O. Risk of solid tumors and myeloid hematological malignancies among first‐degree relatives of patients with monoclonal gammopathy of undetermined significance. Haematologica. 2009;94:1179‐1181. PubMed PMC

Landgren O, Kristinsson SY, Goldin LR, et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first‐degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood. 2009;114:791‐795. PubMed PMC

Vachon CM, Kyle RA, Therneau TM, et al. Increased risk of monoclonal gammopathy in first‐degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood. 2009;114:785‐790. PubMed PMC

Kristinsson SY, Bjorkholm M, Goldin LR, et al. Patterns of hematologic malignancies and solid tumors among 37,838 first‐degree relatives of 13,896 patients with multiple myeloma in Sweden. Int J Cancer. 2009;125:2147‐2150. PubMed PMC

Frank C, Fallah M, Chen T, et al. Search for familial clustering of multiple myeloma with any cancer. Leukemia. 2016;30:627‐632. PubMed

Frank C, Sundquist J, Yu H, Hemminki A, Hemminki K. Concordant and discordant familial cancer: familial risks, proportions and population impact. Int J Cancer. 2017;140:1510‐1516. PubMed

Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol. 2019;16:227‐240. PubMed

Ripperger T, Bielack SS, Borkhardt A, et al. Childhood cancer predisposition syndromes—a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173:1017‐1037. PubMed

Zhang J, Walsh MF, Wu G, et al. Germline mutations in predisposition genes in pediatric Cancer. N Engl J Med. 2015;373:2336‐2346. PubMed PMC

Pertesi M, Vallée M, Wei X, et al. Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia. 2019;33:2324‐2330. PubMed PMC

Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. PLoS Genet. 2018;14:e1007111. PubMed PMC

Wei X, Calvo‐Vidal MN, Chen S, et al. Germline lysine‐specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma. Cancer Res. 2018;78:2747‐2759. PubMed PMC

Pertesi M, Went M, Hansson M, Hemminki K, Houlston RS, Nilsson B. Genetic predisposition for multiple myeloma. Leukemia. 2020;34:697‐708. PubMed

Catalano C, Paramasivam N, Blocka J, et al. Characterization of rare germline variants in familial multiple myeloma. Blood Cancer J. 2021;11:33. PubMed PMC

Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9:3707. PubMed PMC

Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44:58‐61. PubMed PMC

Chubb D, Weinhold N, Broderick P, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet. 2013;45:1221‐1225. PubMed PMC

Mitchell JS, Li N, Weinhold N, et al. Genome‐wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050. PubMed PMC

Swaminathan B, Thorleifsson G, Joud M, et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat Commun. 2015;6:7213. PubMed PMC

Li N, Johnson DC, Weinhold N, et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4‐binding site and interferes with CDCA7L expression. Nat Commun. 2016;7:13656. PubMed PMC

Weinhold N, Meissner T, Johnson DC, et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele‐specific regulation of the MYC‐interacting gene CDCA7L in malignant plasma cells. Haematologica. 2015;100:e110‐e113. PubMed PMC

Ali M, Ajore R, Wihlborg AK, et al. The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression. Nat Commun. 2018;9:1649. PubMed PMC

Li N, Johnson DC, Weinhold N, et al. Genetic predisposition to multiple myeloma at 5q15 is mediated by an ELL2 enhancer polymorphism. Cell Rep. 2017;20:2556‐2564. PubMed PMC

Park KS, Bayles I, Szlachta‐McGinn A, et al. Transcription elongation factor ELL2 drives Ig secretory‐specific mRNA production and the unfolded protein response. J Immunol. 2014;193:4663‐4674. PubMed PMC

Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, et al. Identification of sequence variants influencing immunoglobulin levels. Nat Genet. 2017;49:1182‐1191. PubMed

Weinhold N, Johnson DC, Chubb D, et al. The CCND1 G870A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat Genet. 2013;45:522‐525. PubMed PMC

Chattopadhyay S, Thomsen H, Yadav P, et al. Genome‐wide interaction and pathway‐based identification of key regulators in multiple myeloma. Commun Biol. 2019;2:89. PubMed PMC

Thomsen H, Campo C, Weinhold N, et al. Genome‐wide association study on monoclonal gammopathy of unknown significance (MGUS). Eur J Haematol. 2017;99:70‐79. PubMed

Clay‐Gilmour AI, Hildebrandt MAT, Brown EE, et al. Coinherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance. Blood Adv. 2020;4:2789‐2797. PubMed PMC

Went M, Sud A, Speedy H, et al. Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology. Blood Cancer J. 2018;9:1. PubMed PMC

Chattopadhyay S, Thomsen H, Weinhold N, et al. Eight novel loci implicate shared genetic etiology in multiple myeloma, AL amyloidosis, and monoclonal gammopathy of unknown significance. Leukemia. 2020;34:1187‐1191. PubMed

Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B‐cell differentiation. Nat Rev Immunol. 2002;2:920‐932. PubMed

Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991;354:389‐392. PubMed

O'Brien RL, Brinster RL, Storb U. Somatic hypermutation of an immunoglobulin transgene in K transgenic mice. Nature. 1987;326:405‐409. PubMed

Liu YJ, Malisan F, de Bouteiller O, et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity. 1996;4:241‐250. PubMed

Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and Hypermutation require activation‐induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553‐563. PubMed

Bakkus M, Heirman C, Van Riet I, van Camp B, Thielemans K. Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood. 1992;80:2326‐2335. PubMed

Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11:1917. PubMed PMC

Landgren O, Kyle RA, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412‐5417. PubMed PMC

Avet‐Loiseau H, Facon T, Grosbois B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood. 2002;99:2185‐2191. PubMed

Avet‐Loiseau H, Li JY, Facon T, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res. 1998;58:5640‐5645. PubMed

Chesi M, Bergsagel P, Brents L, Smith C, Gerhard D, Kuehl W. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines [see comments]. Blood. 1996;88:674‐681. PubMed

Chesi M, Nardini E, Lim RSC, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92:3025‐3034. PubMed

Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c‐maf proto‐oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91:4457‐4463. PubMed

González D, van der Burg M, García‐Sanz R, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112‐3121. PubMed

Chng WJ, van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106:2156‐2161. PubMed PMC

Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10:3835. PubMed PMC

Hoang PH, Cornish AJ, Sherborne AL, et al. An enhanced genetic model of relapsed IGH‐translocated multiple myeloma evolutionary dynamics. Blood Cancer J. 2020;10:101. PubMed PMC

Diamond B, Yellapantula V, Rustad EH, et al. Positive selection as the unifying force for clonal evolution in multiple myeloma. Leukemia. 2021;35:1511‐1515. PubMed

Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467‐472. PubMed PMC

Hoang PH, Dobbins SE, Cornish AJ, et al. Whole‐genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. Leukemia. 2018;32:2459‐2470. PubMed PMC

Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood. 2012;120:1077‐1086. PubMed

Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28:384‐390. PubMed PMC

Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587‐597. PubMed PMC

Bolli N, Avet‐Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. PubMed PMC

Bustoros M, Sklavenitis‐Pistofidis R, Park J, et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J Clin Oncol. 2020;38:2380‐2389. PubMed PMC

Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33:457‐468. PubMed PMC

Rustad EH, Yellapantula VD, Glodzik D, et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 2020;1:258‐273. PubMed PMC

Boyle EM, Deshpande S, Tytarenko R, et al. The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma. Nat Commun. 2021;12:293. PubMed PMC

Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi‐region sequencing. Nat Commun. 2017;8:268. PubMed PMC

Bolli N, Maura F, Minvielle S, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9:3363. PubMed PMC

Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c‐myc locus associated with c‐myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA. 2000;97:228‐233. PubMed PMC

Avet‐Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R. Rearrangements of the c‐Myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98:3082‐3086. PubMed

Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma‐associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116:e56‐e65. PubMed

López‐Corral L, Gutiérrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17:1692‐1700. PubMed

Walker BA, Boyle EM, Wardell CP, et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33:3911‐3920. PubMed PMC

Andrulis M, Lehners N, Capper D, et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 2013;3:862‐869. PubMed

Sriskandarajah P, De Haven BA, MacLeod K, et al. Combined targeting of MEK and the glucocorticoid receptor for the treatment of RAS‐mutant multiple myeloma. BMC Cancer. 2020;20:269. PubMed PMC

Raab MS, Lehners N, Xu J, et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127:2155‐2157. PubMed

Martinez‐Garcia E, Popovic R, Min D‐J, et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 2011;117:211‐220. PubMed PMC

Guillerm G, Gyan E, Wolowiec D, et al. p16(INK4a) and p15(INK4b) gene methylations in plasma cells from monoclonal gammopathy of undetermined significance. Blood. 2001;98:244‐246. PubMed

Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood. 1997;89:2500‐2506. PubMed

Kulkarni MS, Daggett JL, Bender TP, Kuehl WM, Bergsagel PL, Williams ME. Frequent inactivation of the cyclin‐dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis. Leukemia. 2002;16:127‐134. PubMed

Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl‐1 rather than Bcl‐2 or Bcl‐x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194‐199. PubMed

Ong F, van Nieuwkoop JA, de Groot‐Swings GM, et al. Bcl‐2 protein expression is not related to short survival in multiple myeloma. Leukemia. 1995;9:1282‐1284. PubMed

Schwarze MM, Hawley RG. Prevention of myeloma cell apoptosis by ectopic bcl‐2 expression or interleukin 6‐mediated up‐regulation of bcl‐xL. Cancer Res. 1995;55:2262‐2265. PubMed

Rajkumar SV, Mesa RA, Fonseca R, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8:2210‐2216. PubMed

Zavidij O, Haradhvala NJ, Mouhieddine TH, et al. Single‐cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat Cancer. 2020;1:493‐506. PubMed PMC

Liu R, Gao Q, Foltz SM, et al. Co‐evolution of tumor and immune cells during progression of multiple myeloma. Nat Commun. 2021;12:2559. PubMed PMC

Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia. 2007;21:158‐163. PubMed

Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356:2582‐2590. PubMed

Rajkumar SV, Kyle RA, Therneau TM, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005;106:812‐817. PubMed PMC

Mateos M‐V, Kumar S, Dimopoulos MA, et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 2020;10:102. PubMed PMC

Kyle RA, Durie BGM, Rajkumar SV, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24:1121‐1127. PubMed PMC

Kyle RA, Therneau TM, Rajkumar SV, et al. A long‐term study of prognosis in monoclonal Gammopathy of undetermined significance. N Engl J Med. 2002;346:564‐569. PubMed

Pérez‐Persona E, Vidriales M‐B, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110:2586‐2592. PubMed

Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8:59. PubMed PMC

Mateos M‐V, Hernández M‐T, Giraldo P, et al. Lenalidomide plus dexamethasone versus observation in patients with high‐risk smouldering multiple myeloma (QuiRedex): long‐term follow‐up of a randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17:1127‐1136. PubMed

Lonial S, Jacobus S, Fonseca R, et al. Randomized trial of Lenalidomide versus observation in smoldering multiple myeloma. J Clin Oncol. 2020;38:1126‐1137. PubMed PMC

Mateos M‐V, Martinez‐Lopez J, Rodriguez Otero P, et al. Curative strategy (GEM‐CESAR) for high‐risk smoldering myeloma (SMM): carfilzomib, lenalidomide and dexamethasone (KRd) as induction followed by HDT‐ASCT, consolidation with Krd and maintenance with Rd. Blood. 2019;134:781.

Goodman AM, Kim MS, Prasad V. Persistent challenges with treating multiple myeloma early. Blood. 2021;137:456‐458. PubMed

Dispenzieri A. Monoclonal gammopathies of clinical significance. Hematology. 2020;2020:380‐388. PubMed PMC

Kristinsson SY, Tang M, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population‐based study. Haematologica. 2012;97:854‐858. PubMed PMC

Ludwig H, Boccadoro M, Moreau P, et al. Recommendations for vaccination in multiple myeloma: a consensus of the European Myeloma Network. Leukemia. 2021;35:31‐44. PubMed PMC

Hartkamp A, Mulder AH, Rijkers GT, van Velzen‐Blad H, Biesma DH. Antibody responses to pneumococcal and haemophilus vaccinations in patients with B‐cell chronic lymphocytic leukaemia. Vaccine. 2001;19:1671‐1677. PubMed

Kyle RA. Five decades of therapy for multiple myeloma: a paradigm for therapeutic models. Leukemia. 2005;19:910‐912. PubMed

Holland JF, Hosley H, Scharlau C, et al. A controlled trial of urethane treatment in multiple myeloma. Blood. 1966;27:328‐342. PubMed

Bergsagel DE, Sprague CC, Austin C, Griffith KM. Evaluation of new chemotherapeutic agents in the treatment of multiple myeloma. IV. L‐Phenylalanine mustard (NSC‐8806). Cancer Chemother Rep. 1962;21:87‐99. PubMed

Alexanian R, Haut A, Khan AU, et al. Treatment for multiple myeloma. Combination chemotherapy with different melphalan dose regimens. JAMA. 1969;208:1680‐1685. PubMed

McElwain TJ, Powles RL. High‐dose intravenous melphalan for plasma‐cell leukaemia and myeloma. Lancet. 1983;2:822‐824. PubMed

Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565‐1571. PubMed

Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301‐305. PubMed PMC

Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon‐dependent destruction of Ikaros proteins. Science. 2014;343:305‐309. PubMed PMC

Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345‐1350. PubMed

Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615‐2622. PubMed

Orlowski RZ, Eswara JR, Lafond‐Walker A, Grever MR, Orlowski M, Dang CV. Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res. 1998;58:4342‐4348. PubMed

Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609‐2617. PubMed

Kyle RA, Rajkumar SV. Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma. 2009;9:278‐288. PubMed PMC

Bergsagel PL. Where we were, where we are, where we are going: progress in multiple myeloma. Am Soc Clin Oncol Educ Book. 2014;199‐203. PubMed

Kristinsson SY, Landgren O, Dickman PW, Derolf AR, Bjorkholm M. Patterns of survival in multiple myeloma: a population‐based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol. 2007;25:1993‐1999. PubMed

Ellis L, Woods LM, Estève J, Eloranta S, Coleman MP, Rachet B. Cancer incidence, survival and mortality: explaining the concepts. Int J Cancer. 2014;135:1774‐1782. PubMed

Pulte D, Jansen L, Castro FA, et al. Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol. 2015;171:189‐196. PubMed

Thorsteinsdottir S, Dickman PW, Landgren O, et al. Dramatically improved survival in multiple myeloma patients in the recent decade: results from a Swedish population‐based study. Haematologica. 2018;103:e412‐e415. PubMed PMC

Bridoux F, Arnulf B, Karlin L, et al. Randomized trial comparing double versus triple Bortezomib‐based regimen in patients with multiple myeloma and acute kidney injury due to cast nephropathy. J Clin Oncol. 2020;38:2647‐2657. PubMed

Magarotto V, Bringhen S, Offidani M, et al. Triplet vs doublet lenalidomide‐containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma. Blood. 2016;127:1102‐1108. PubMed

Durie BGM, Hoering A, Abidi MH, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem‐cell transplant (SWOG S0777): a randomised, open‐label, phase 3 trial. The Lancet. 2017;389:519‐527. PubMed PMC

Cavo M, Tacchetti P, Patriarca F, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem‐cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet. 2010;376:2075‐2085. PubMed

Moreau P, Avet‐Loiseau H, Facon T, et al. Bortezomib plus dexamethasone versus reduced‐dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood. 2011;118:5752‐5758. PubMed

Lokhorst H, Einsele H, Vesole D, et al. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem‐cell transplantation for multiple myeloma. J Clin Oncol. 2010;28:4521‐4530. PubMed

Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328‐e346. PubMed

Schinke C, Hoering A, Wang H, et al. The prognostic value of the depth of response in multiple myeloma depends on the time of assessment, risk status and molecular subtype. Haematologica. 2017;102:e313‐e316. PubMed PMC

Munshi NC, Avet‐Loiseau H, Anderson KC, et al. A large meta‐analysis establishes the role of MRD negativity in long‐term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4:5988‐5999. PubMed PMC

Attal M, Harousseau J‐L, Stoppa A‐M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med. 1996;335:91‐97. PubMed

Child JA, Morgan GJ, Davies FE, et al. High‐dose chemotherapy with hematopoietic stem‐cell rescue for multiple myeloma. N Engl J Med. 2003;348:1875‐1883. PubMed

Palumbo A, Bringhen S, Petrucci MT, et al. Intermediate‐dose melphalan improves survival of myeloma patients aged 50 to 70: results of a randomized controlled trial. Blood. 2004;104:3052‐3057. PubMed

Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371:895‐905. PubMed

Attal M, Lauwers‐Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376:1311‐1320. PubMed PMC

Moreau P, Hulin C, Macro M, et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013‐04 trial. Blood. 2016;127:2569‐2574. PubMed

St Bernard R, Chodirker L, Masih‐Khan E, et al. Efficacy, toxicity and mortality of autologous SCT in multiple myeloma patients with dialysis‐dependent renal failure. Bone Marrow Transplant. 2015;50:95‐99. PubMed

Joseph NS, Kaufman JL, Dhodapkar MV, et al. Long‐term follow‐up results of lenalidomide, bortezomib, and dexamethasone induction therapy and risk‐adapted maintenance approach in newly diagnosed multiple myeloma. J Clin Oncol. 2020;38:1928‐1937. PubMed PMC

Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem‐cell transplantation versus bortezomib‐melphalan‐prednisone, with or without bortezomib‐lenalidomide‐dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a multicentre, randomised, open‐label, phase 3 study. Lancet Haematol. 2020;7:e456‐e468. PubMed

Stadtmauer EA, Pasquini MC, Blackwell B, et al. Autologous transplantation, consolidation, and maintenance therapy in multiple myeloma: results of the BMT CTN 0702 trial. J Clin Oncol. 2019;37:589‐597. PubMed PMC

Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (myeloma XI): a multicentre, open‐label, randomised, phase 3 trial. Lancet Oncol. 2019;20:57‐73. PubMed PMC

Pawlyn C, Cairns D, Kaiser M, et al. The relative importance of factors predicting outcome for myeloma patients at different ages: results from 3894 patients in the myeloma XI trial. Leukemia. 2020;34:604‐612. PubMed PMC

Turesson I, Bjorkholm M, Blimark CH, Kristinsson S, Velez R, Landgren O. Rapidly changing myeloma epidemiology in the general population: increased incidence, older patients, and longer survival. Eur J Haematol. 2018;101:237‐244. 10.1111/ejh.13083 PubMed DOI PMC

Palumbo A, Bringhen S, Mateos M‐V, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood. 2015;125:2068‐2074. PubMed PMC

O'Donnell EK, Laubach JP, Yee AJ, et al. Updated results of a phase 2 study of modified Lenalidomide, Bortezomib, and dexamethasone (RVd‐lite) in transplant‐ineligible multiple myeloma. Blood. 2019;134:3178. PubMed PMC

Mateos MV, Cavo M, Blade J, et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): a randomised, open‐label, phase 3 trial. Lancet. 2020;395:132‐141. PubMed

Facon T, Kumar S, Plesner T, et al. Daratumumab plus Lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380:2104‐2115. PubMed PMC

Benboubker L, Dimopoulos MA, Dispenzieri A, et al. Lenalidomide and dexamethasone in transplant‐ineligible patients with myeloma. N Engl J Med. 2014;371:906‐917. PubMed

Moreau P, Kumar SK, San Miguel J, et al. Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncol. 2021;22:e105‐e118. PubMed

Yong K, Delforge M, Driessen C, et al. Multiple myeloma: patient outcomes in real‐world practice. Br J Haematol. 2016;175:252‐264. PubMed PMC

Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38‐targeted monoclonal antibody therapy. Leukemia. 2019;33:2266‐2275. PubMed PMC

Grosicki S, Simonova M, Spicka I, et al. Once‐per‐week selinexor, bortezomib, and dexamethasone versus twice‐per‐week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open‐label, phase 3 trial. The Lancet. 2020;396:1563‐1573. PubMed

Laubach JP, Schjesvold F, Mariz M, et al. Efficacy and safety of oral panobinostat plus subcutaneous bortezomib and oral dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma (PANORAMA 3): an open‐label, randomised, phase 2 study. Lancet Oncol. 2021;22:142‐154. PubMed

Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811‐1822. PubMed

Pillarisetti K, Powers G, Luistro L, et al. Teclistamab is an active T cell‐redirecting bispecific antibody against B‐cell maturation antigen for multiple myeloma. Blood Adv. 2020;4:4538‐4549. PubMed PMC

Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM‐2): a two‐arm, randomised, open‐label, phase 2 study. Lancet Oncol. 2020;21:207‐221. PubMed

Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705‐716. PubMed

Samur MK, Fulciniti M, Aktas Samur A, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021;12:868. PubMed PMC

Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti‐BCMA CAR T cells in a patient with multiple myeloma. Nat Med. 2021;27:616‐619. PubMed

Chen H, Li M, Xu N, et al. Serum B‐cell maturation antigen (BCMA) reduces binding of anti‐BCMA antibody to multiple myeloma cells. Leuk Res. 2019;81:62‐66. PubMed

Kumar SK, Harrison SJ, Cavo M, et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double‐blind, multicentre, phase 3 trial. Lancet Oncol. 2020;21:1630‐1642. PubMed

Cleynen A, Samur M, Perrot A, et al. Variable BCL2/BCL2L1 ratio in multiple myeloma with t(11;14). Blood. 2018;132:2778‐2780. PubMed PMC

Huang ZQ, Sanders PW. Localization of a single binding site for immunoglobulin light chains on human Tamm‐Horsfall glycoprotein. J Clin Invest. 1997;99:732‐736. PubMed PMC

Solomon A, Weiss DT, Kattine AA. Nephrotoxic potential of Bence Jones proteins. N Engl J Med. 1991;324:1845‐1851. PubMed

Gonsalves WI, Leung N, Rajkumar SV, et al. Improvement in renal function and its impact on survival in patients with newly diagnosed multiple myeloma. Blood Cancer J. 2015;5:e296. PubMed PMC

Dimopoulos MA, Roussou M, Gavriatopoulou M, et al. Outcomes of newly diagnosed myeloma patients requiring dialysis: renal recovery, importance of rapid response and survival benefit. Blood Cancer J. 2017;7:e571. PubMed PMC

Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma‐related renal impairment. J Clin Oncol. 2016;34:1544‐1557. PubMed

Heider U, Langelotz C, Jakob C, et al. Expression of receptor activator of nuclear factor κB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin Cancer Res. 2003;9:1436‐1440. PubMed

Tian E, Zhan F, Walker R, et al. The role of the Wnt‐signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483‐2494. PubMed

Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Bisphosphonates in multiple myeloma: an updated network meta‐analysis. Cochrane Database Syst Rev. 2017;12:CD003188. PubMed PMC

Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double‐blind, double‐dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018;19:370‐381. PubMed

Hussein MA, Vrionis FD, Allison R, et al. The role of vertebral augmentation in multiple myeloma: International Myeloma Working Group Consensus Statement. Leukemia. 2008;22:1479‐1484. PubMed

Kristinsson SY, Pfeiffer RM, Bjorkholm M, et al. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: a population‐based study. Blood. 2010;115:4991‐4998. PubMed PMC

Kristinsson SY, Fears TR, Gridley G, et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 2008;112:3582‐3586. PubMed PMC

Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide‐ and lenalidomide‐associated thrombosis in myeloma. Leukemia. 2008;22:414‐423. PubMed

Man L, Morris A, Brown J, Palkimas S, Davidson K. Use of direct oral anticoagulants in patients on immunomodulatory agents. J Thromb Thrombolysis. 2017;44:298‐302. PubMed

Blimark C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population‐based study on 9253 multiple myeloma patients. Haematologica. 2015;100:107‐113. PubMed PMC

Augustson BM, Begum G, Dunn JA, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2005;23:9219‐9226. PubMed

Drayson MT, Bowcock S, Planche T, et al. Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double‐blind, placebo‐controlled, randomised, phase 3 trial. Lancet Oncol. 2019;20:1760‐1772. PubMed PMC

Ludwig H, Miguel JS, Dimopoulos MA, et al. International Myeloma Working Group recommendations for global myeloma care. Leukemia. 2014;28:981‐992. PubMed

Cook G, John Ashcroft A, Pratt G, et al. Real‐world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID‐19 disease) in patients with multiple myeloma receiving systemic anti‐cancer therapy. Br J Haematol. 2020;190:e83‐e86. PubMed PMC

Chari A, Samur MK, Martinez‐Lopez J, et al. Clinical features associated with COVID‐19 outcome in multiple myeloma: first results from the International Myeloma Society data set. Blood. 2020;136:3033‐3040. PubMed PMC

Malard F, Mohty M. Management of patients with multiple myeloma during the COVID‐19 pandemic. Lancet Haematol. 2020;7:e435‐e437. PubMed PMC

Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV‐19 vaccine (AZD1222) against SARS‐CoV‐2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021;397:99‐111. PubMed PMC

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid‐19 vaccine. N Engl J Med. 2020;383:2603‐2615. PubMed PMC

Bird S, Panopoulou K, Shea S, et al. Response to first vaccination against SARS‐CoV‐2 in patients with multiple myeloma. Lancet Haematol. 2021;8:e389‐e392. PubMed PMC

Chattopadhyay S, Yu H, Sud A, et al. Multiple myeloma: family history and mortality in second primary cancers. Blood Cancer J. 2018;8:75. PubMed PMC

Mohyuddin GR, Koehn K, Abdallah A‐O, et al. Use of endpoints in multiple myeloma randomized controlled trials over the last 15 years: a systematic review. Am J Hematol. 2021;96:690‐697. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...