Genetic predisposition for multiple myeloma
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31913320
DOI
10.1038/s41375-019-0703-6
PII: 10.1038/s41375-019-0703-6
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci * MeSH
- genetická variace MeSH
- genom lidský MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- mnohočetný myelom epidemiologie genetika MeSH
- riziko MeSH
- sekvenční analýza DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Multiple myeloma (MM) is the second most common blood malignancy. Epidemiological family studies going back to the 1920s have provided evidence for familial aggregation, suggesting a subset of cases have an inherited genetic background. Recently, studies aimed at explaining this phenomenon have begun to provide direct evidence for genetic predisposition to MM. Genome-wide association studies have identified common risk alleles at 24 independent loci. Sequencing studies of familial cases and kindreds have begun to identify promising candidate genes where variants with strong effects on MM risk might reside. Finally, functional studies are starting to give insight into how identified risk alleles promote the development of MM. Here, we review recent findings in MM predisposition field, and highlight open questions and future directions.
Broad Institute 415 Main Street Cambridge MA 02142 USA
Faculty of Medicine and Biomedical Center Charles University Prague 30605 Pilsen Czech Republic
Hematology and Transfusion Medicine Department of Laboratory Medicine BMC B13 221 84 Lund Sweden
Zobrazit více v PubMed
Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–7. PubMed DOI PMC
Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl J Med. 2006;354:1362–9. DOI
Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O, Lynch HT, et al. Inherited genetic susceptibility to multiple myeloma. Leukemia. 2014;28:518–24. DOI
Altieri A, Chen B, Bermejo JL, Castro F, Hemminki K. Familial risks and temporal incidence trends of multiple myeloma. Eur J Cancer. 2006;42:1661–70. DOI
Camp NJ, Werner TL, Cannon-Albright L. Familial myeloma. N. Engl J Med. 2008;359:1734–5. DOI
Landgren O, Kristinsson SY, Goldin LR, Caporaso NE, Blimark C, Mellqvist U-H, et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood. 2009;114:791–5. PubMed DOI PMC
Kristinsson SY, Björkholm M, Goldin LR, Blimark C, Mellqvist U, Wahlin A, et al. Patterns of hematologic malignancies and solid tumors among 37,838 first‐degree relatives of 13,896 patients with multiple myeloma in Sweden. Int J Cancer. 2009;125:2147–50. PubMed DOI PMC
Frank C, Fallah M, Chen T, Mai EK, Sundquist J, Försti A, et al. Search for familial clustering of multiple myeloma with any cancer. Leukemia. 2016;30:627–32. DOI
Kristinsson SY, Björkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden. Blood. 2008;112:3052–6. PubMed DOI PMC
Schinasi LH, Brown EE, Camp NJ, Wang SS, Hofmann JN, Chiu BC, et al. Multiple myeloma and family history of lymphohaematopoietic cancers: results from the International Multiple Myeloma Consortium. Br J Haematol. 2016;175:87–101. PubMed DOI PMC
Read J, Symmons J, Palmer JM, Montgomery GW, Martin NG, Hayward NK. Increased incidence of bladder cancer, lymphoid leukaemia, and myeloma in a cohort of Queensland melanoma families. Fam Cancer. 2016;15:651–63. DOI
Frank C, Sundquist J, Hemminki A, Hemminki K. Risk of other cancers in families with melanoma: novel familial links. Sci Rep. 2017;7:42601. PubMed DOI PMC
Frank C, Sundquist J, Hemminki A, Hemminki K. Familial associations between prostate cancer and other cancers. Eur Urol. 2017;71:162–5. DOI
Eriksson M, Hållberg B. Familial occurrence of hematologic malignancies and other diseases in multiple myeloma: a case-control study. Cancer Causes Control. 1992;3:63–7. DOI
Hemminki K, Li X, Czene K. Familial risk of cancer: data for clinical counseling and cancer genetics. Int J Cancer. 2004;108:109–14. DOI
Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS et al. Analysis of 153,115 patients with hematological malignancies refines the spectrum of familial risk. Blood. 2019. https://doi.org/10.1182/blood.2019001362 .
Hemminki K, Chen B. Familial association of colorectal adenocarcinoma with cancers at other sites. Eur J Cancer. 2004;40:2480–7. DOI
Kristinsson SY, Goldin LR, Bjorkholm M, Turesson I, Landgren O. Risk of solid tumors and myeloid hematological malignancies among first-degree relatives of patients with monoclonal gammopathy of undetermined significance. Haematologica. 2009;94:1179–81. PubMed DOI PMC
Bourguet CC, Grufferman S, Delzell E, Delong ER, Cohen HJ. Multiple myeloma and family history of cancer a case—control study. Cancer. 1985;56:2133–9. DOI
Cohen HJ, Crawford J, Rao MK, Pieper CF, Currie MS. Racial differences in the prevalence of monoclonal gammopathy in a community-based sample of the elderly. Am J Med. 1998;104:439–44. DOI
Landgren O, Katzmann JA, Hsing AW, Pfeiffer RM, Kyle RA, Yeboah ED, et al. Prevalence of monoclonal gammopathy of undetermined significance among men in ghana. Mayo Clin Proc. 2007;82:1468–73. DOI
Landgren O. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood. 2005;107:904–6. DOI
Greenberg AJ, Vachon CM, Rajkumar SV. Disparities in the prevalence, pathogenesis and progression of monoclonal gammopathy of undetermined significance and multiple myeloma between blacks and whites. Leukemia. 2012;26:609–14. DOI
Landgren O, Graubard BI, Katzmann JA, Kyle RA, Ahmadizadeh I, Clark R, et al. Racial disparities in the prevalence of monoclonal gammopathies: a population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia. 2014;28:1537–42. PubMed DOI PMC
Waxman AJ, Mink PJ, Devesa SS, Anderson WF, Weiss BM, Kristinsson SY, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood. 2010;116:5501–6. PubMed DOI PMC
Brown LM, Linet MS, Greenberg RS, Silverman DT, Hayes RB, Swanson GM, et al. Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer. 1999;85:2385–90. DOI
VanValkenburg ME, Pruitt GI, Brill IK, Costa L, Ehtsham M, Justement IT, et al. Family history of hematologic malignancies and risk of multiple myeloma: differences by race and clinical features. Cancer Causes Control. 2016;27:81–91. DOI
Broderick P, Chubb D, Johnson DC, Weinhold N, Försti A, Lloyd A, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44:58–61. DOI
Chubb D, Weinhold N, Broderick P, Chen B, Johnson DC, Försti A, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet. 2013;45:1221–5. PubMed DOI PMC
Weinhold N, Johnson DC, Chubb D, Chen B, Försti A, Hosking FJ, et al. The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat Genet. 2013;45:522–5. PubMed DOI PMC
Swaminathan B, Thorleifsson G, Jöud M, Ali M, Johnsson E, Ajore R, et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat Commun. 2015;6:7213. PubMed DOI PMC
Mitchell JS, Li N, Weinhold N, Försti A, Ali M, van Duin M, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050. PubMed DOI PMC
Went M, Sud A, Försti A, Halvarsson B-M, Weinhold N, Kimber S, et al. Author correction: identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2019;10:213. PubMed DOI PMC
Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95. PubMed DOI PMC
Huang A, Ho CSW, Ponzielli R, Barsyte-Lovejoy D, Bouffet E, Picard D, et al. Identification of a novel c-Myc protein interactor, JPO2, with transforming activity in medulloblastoma cells. Cancer Res. 2005;65:5607–19. DOI
Weinhold N, Meissner T, Johnson DC, Seckinger A, Moreaux J, Forsti A, et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica. 2015;100:e110–e113. PubMed DOI PMC
Li N, Johnson DC, Weinhold N, Studd JB, Orlando G, Mirabella F, et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression. Nat Commun. 2016;7:13656. PubMed DOI PMC
Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35:934–46. DOI
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl J Med. 2014;371:2488–98. PubMed DOI PMC
Liu M, Hsu J, Chan C, Li Z, Zhou Q. The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell. 2012;46:325–34. PubMed DOI PMC
Duffy DL, Zhu G, Li X, Sanna M, Iles MM, Jacobs LC, et al. Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nat Commun. 2018;9:4774. PubMed DOI PMC
Iles MM, Bishop DT, Taylor JC, Hayward NK, Brossard M, Cust AE et al. The effect on melanoma risk of genes previously associated with telomere length. JNCI J Natl Cancer Inst. 2014; 106. https://doi.org/10.1093/jnci/dju267 .
Ojha J, Codd V, Nelson CP, Samani NJ, Smirnov IV, Madsen NR, et al. Genetic variation associated with longer telomere length increases risk of chronic lymphocytic leukemia. Cancer Epidemiol Biomark Prev. 2016;25:1043–9. DOI
Walsh KM, Codd V, Smirnov IV, Rice T, Decker PA, Hansen HM, et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet. 2014;46:731–5. PubMed DOI PMC
Karami S, Han Y, Pande M, Cheng I, Rudd J, Pierce BL, et al. Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer. 2016;139:2655–70. PubMed DOI PMC
Gudmundsson J, Thorleifsson G, Sigurdsson JK, Stefansdottir L, Jonasson JG, Gudjonsson SA, et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nat Commun. 2017;8:14517. PubMed DOI PMC
Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, et al. Identification of sequence variants influencing immunoglobulin levels. Nat Genet. 2017;49:1182–91. DOI
Salzer U, Chapel HM, Webster ADB, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820–8. DOI
Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol. 2005;24:117–25. DOI
Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood. 2007;109:3489–95. PubMed DOI PMC
Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene. 2006;25:1620–8. DOI
Li Z, Wang C, Jiao X, Katiyar S, Casimiro MC, Prendergast GC, et al. Alternate cyclin D1 mRNA splicing modulates p27 KIP1 binding and cell migration. J Biol Chem. 2008;283:7007–15. DOI
Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, et al. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res. 2010;70:8802–11. PubMed DOI PMC
Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol. 2012;13:543–7. PubMed DOI PMC
Benson MJ, Aijo T, Chang X, Gagnon J, Pape UJ, Anantharaman V, et al. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells. Proc Natl Acad Sci. 2012;109:16252–7. PubMed DOI PMC
Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol. 2009;10:1102–9. PubMed DOI PMC
Park KS, Bayles I, Szlachta-McGinn A, Paul J, Boiko J, Santos P, et al. Transcription elongation factor ELL2 drives Ig secretory-specific mRNA production and the unfolded protein response. J Immunol. 2014;193:4663–74. PubMed DOI PMC
Shell SA, Martincic K, Tran J, Milcarek C. Increased phosphorylation of the carboxyl-terminal domain of RNA polymerase II and loading of polyadenylation and cotranscriptional factors contribute to regulation of the Ig heavy chain mRNA in plasma cells. J Immunol. 2007;179:7663–73. DOI
Ali M, Ajore R, Wihlborg A-K, Niroula A, Swaminathan B, Johnsson E, et al. The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression. Nat Commun. 2018;9:1649. PubMed DOI PMC
Li N, Johnson DC, Weinhold N, Kimber S, Dobbins SE, Mitchell JS, et al. Genetic predisposition to multiple myeloma at 5q15 is mediated by an ELL2 enhancer polymorphism. Cell Rep. 2017;20:2556–64. PubMed DOI PMC
Keskitalo S, Haapaniemi EM, Glumoff V, Liu X, Lehtinen V, Fogarty C, et al. Dominant TOM1 mutation associated with combined immunodeficiency and autoimmune disease. npj Genom Med. 2019;4:14. PubMed DOI PMC
Kinkel SA, Galeev R, Flensburg C, Keniry A, Breslin K, Gilan O, et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood. 2015;125:1890–1900. PubMed DOI PMC
Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy. 2008;4:309–14. PubMed DOI PMC
Conway KL, Kuballa P, Khor B, Zhang M, Shi HN, Virgin HW, et al. ATG5 regulates plasma cell differentiation. Autophagy. 2013;9:528–37. PubMed DOI PMC
Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14:298–305. PubMed DOI PMC
Oliva L, Cenci S. Autophagy in plasma cell pathophysiology. Front Immunol. 2014; 5. https://doi.org/10.3389/fimmu.2014.00103 .
Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42:132–6. PubMed DOI PMC
Fletcher O, Houlston RS. Architecture of inherited susceptibility to common cancer. Nat Rev Cancer. 2010;10:353–61. PubMed DOI PMC
Cerhan JR, Berndt SI, Vijai J, Ghesquières H, McKay J, Wang SS, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46:1233–8. PubMed DOI PMC
Enciso-Mora V, Broderick P, Ma Y, Jarrett RF, Hjalgrim H, Hemminki K, et al. A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet. 2010;42:1126–30. PubMed DOI PMC
McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet. 2007;80:588–604. PubMed DOI PMC
Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42:492–4. PubMed DOI PMC
Joachim J, Wirth M, McKnight NC, Tooze SA. Coiling up with SCOC and WAC. Autophagy. 2012;8:1397–1400. PubMed DOI PMC
Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell. 2011;41:384–97. PubMed DOI PMC
Vanegas S, Ramirez-Montaño D, Candelo E, Shinawi M, Pachajoa H. DeSanto-Shinawi syndrome: first case in South America. Mol Syndromol. 2018;9:154–8. PubMed DOI PMC
Fu X, Yucer N, Liu S, Li M, Yi P, Mu J-J, et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci. 2010;107:4579–84. PubMed DOI PMC
Knies K, Inano S, Ramírez MJ, Ishiai M, Surrallés J, Takata M, et al. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest. 2017;127:3013–27. PubMed DOI PMC
Chung CC, Kanetsky PA, Wang Z, Hildebrandt MAT, Koster R, Skotheim RI, et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet. 2013;45:680–5. PubMed DOI PMC
McCarthy N. Signalling: REX rules. Nat Rev Cancer. 2011;11:83. PubMed DOI PMC
Srijakotre N, Man J, Ooms LM, Lucato CM, Ellisdon AM, Mitchell CAP-Rex1. and P-Rex2 RacGEFs and cancer. Biochem Soc Trans. 2017;45:963–77. DOI
Steinke JW, Hodsdon W, Parenti S, Ostraat R, Lutz R, Borish L, et al. Identification of an Sp factor-dependent promoter in GCET, a gene expressed at high levels in germinal center B cells. Mol Immunol. 2004;41:1145–53. DOI
Park S-R, Zan H, Pal Z, Zhang J, Al-Qahtani A, Pone EJ, et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat Immunol. 2009;10:540–50. PubMed DOI PMC
Comartin D, Gupta GD, Fussner E, Coyaud É, Hasegan M, Archinti M, et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr Biol. 2013;23:1360–6. DOI
Pinzaru AM, Hom RA, Beal A, Phillips AF, Ni E, Cardozo T, et al. Telomere replication stress induced by POT1 inactivation accelerates tumorigenesis. Cell Rep. 2016;15:2170–84. PubMed DOI PMC
Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM, Showe LC, et al. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun. 2017;8:14928. PubMed DOI PMC
Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet. 2014;46:478–81. PubMed DOI PMC
Speedy HE, Di Bernardo MC, Sava GP, Dyer MJS, Holroyd A, Wang Y, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014;46:56–60. DOI
Chang S. Cancer chromosomes going to POT1. Nat Genet. 2013;45:473–5. PubMed DOI PMC
Speedy HE, Kinnersley B, Chubb D, Broderick P, Law PJ, Litchfield K, et al. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood. 2016;128:2319–26. PubMed DOI PMC
Calvete O, Garcia-Pavia P, Domínguez F, Bougeard G, Kunze K, Braeuninger A, et al. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet. 2017;25:1278–81. PubMed DOI PMC
McMaster ML, Sun C, Landi MT, Savage SA, Rotunno M, Yang XR, et al. Germline mutations in protection of Telomeres 1 in two families with Hodgkin lymphoma. Br J Haematol. 2018;181:372–7. PubMed DOI PMC
Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun. 2016;7:10258. PubMed DOI PMC
Erickson SW, Raj VR, Stephens OW, Dhakal I, Chavan SS, Sanathkumar N, et al. Genome-wide scan identifies variant in 2q12.3 associated with risk for multiple myeloma. Blood. 2014;124:2001–3. DOI
Rand KA, Song C, Dean E, Serie DJ, Curtin K, Sheng X, et al. A meta-analysis of multiple myeloma risk regions in African and European ancestry populations identifies putatively functional loci. Cancer Epidemiol Biomark Prev. 2016;25:1609–18. DOI
Li B, Liu C, Cheng G, Peng M, Qin X, Liu Y, et al. LRP1B polymorphisms are associated with multiple myeloma risk in a Chinese han population. J Cancer. 2019;10:577–82. PubMed DOI PMC
Peng M, Zhao G, Yang F, Cheng G, Huang J, Qin X, et al. NCOA1 is a novel susceptibility gene for multiple myeloma in the Chinese population: a case-control study. PLoS One. 2017;12:e0173298. PubMed DOI PMC
Gong J, Zhu M, Chu M, Sun C, Chen W, Jin G, et al. Genetic variants in SMARC genes are associated with DNA damage levels in Chinese population. Toxicol Lett. 2014;229:327–32. DOI
Macauda A, Castelli E, Buda G, Pelosini M, Butrym A, Watek M, et al. Inherited variation in the xenobiotic transporter pathway and survival of multiple myeloma patients. Br J Haematol. 2018;183:375–84. DOI
Lincz LF, Kerridge I, Scorgie FE, Bailey M, Enno A, Spencer A. Xenobiotic gene polymorphisms and susceptibility to multiple myeloma. Haematologica. 2004;89:628–9. PubMed
Martino A, Campa D, Buda G, Sainz J, García-Sanz R, Jamroziak K, et al. Polymorphisms in xenobiotic transporters ABCB1, ABCG2, ABCC2, ABCC1, ABCC3 and multiple myeloma risk: a case–control study in the context of the International Multiple Myeloma rESEarch (IMMEnSE) consortium. Leukemia. 2012;26:1419–22. DOI
Martino A, Sainz J, Manuel Reis R, Moreno V, Buda G, Lesueur F, et al. Polymorphisms in regulators of xenobiotic transport and metabolism genes PXR and CAR do not affect multiple myeloma risk: a case–control study in the context of the IMMEnSE consortium. J Hum Genet. 2013;58:155–9. DOI
Campa D, Martino A, Varkonyi J, Lesueur F, Jamroziak K, Landi S, et al. Risk of multiple myeloma is associated with polymorphisms within telomerase genes and telomere length. Int J Cancer. 2015;136:E351–E358. DOI
Tewari P, Ryan AW, Hayden PJ, Catherwood M, Drain S, Staines A, et al. Genetic variation at the 8q24 locus confers risk to multiple myeloma. Br J Haematol. 2012;156:133–6. DOI
Ríos R, Lupiañez CB, Campa D, Martino A, Martínez-López J, Martínez-Bueno M, et al. Type 2 diabetes-related variants influence the risk of developing multiple myeloma: results from the IMMEnSE consortium. Endocr Relat Cancer. 2015;22:545–59. DOI
Spink CF, Gray LC, Davies FE, Morgan GJ, Bidwell JL. Haplotypic structure across the IκBα gene (NFKBIA) and association with multiple myeloma. Cancer Lett. 2007;246:92–99. DOI
Hayden PJ, Tewari P, Morris DW, Staines A, Crowley D, Nieters A, et al. Variation in DNA repair genes XRCC3, XRCC4, XRCC5 and susceptibility to myeloma. Hum Mol Genet. 2007;16:3117–27. DOI
Pratt G, Fenton JAL, Allsup D, Fegan C, Morgan GJ, Jackson G, et al. A polymorphism in the 3′ UTR of IRF4 linked to susceptibility and pathogenesis in chronic lymphocytic leukaemia and Hodgkin lymphoma has limited impact in multiple myeloma. Br J Haematol. 2010;150:371–3. DOI
Morgan GJ, Adamson PJ, Mensah FK, Spink CF, Law GR, Keen LJ, et al. Haplotypes in the tumour necrosis factor region and myeloma. Br J Haematol. 2005;129:358–65. DOI
Roddam PL. Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination. J Med Genet. 2002;39:900–5. PubMed DOI PMC
Davies FE, Rollinson SJ, Rawstron AC, Roman E, Richards S, Drayson M, et al. High-producer haplotypes of tumor necrosis factor alpha and lymphotoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment. J Clin Oncol. 2000;18:2843–51. DOI
Vangsted A, Klausen TW, Vogel U. Genetic variations in multiple myeloma II: association with effect of treatment. Eur J Haematol. 2012;88:93–117. PubMed DOI PMC
Halvarsson B-M, Wihlborg A-K, Ali M, Lemonakis K, Johnsson E, Niroula A, et al. Direct evidence for a polygenic etiology in familial multiple myeloma. Blood Adv. 2017;1:619–23. PubMed DOI PMC
Dilworth D, Liu L, Stewart AK, Berenson JR, Lassam N, Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood. 2000;95:1869–71. PubMed DOI PMC
Shah V, Boyd KD, Houlston RS, Kaiser MF. Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: a case report. BMC Cancer. 2017;17:718. PubMed DOI PMC
Waller RG, Darlington TM, Wei X, Madsen MJ, Thomas A, Curtin K, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. PLOS Genet. 2018;14:e1007111. PubMed DOI PMC
Wei X, Calvo-Vidal MN, Chen S, Wu G, Revuelta MV, Sun J, et al. Germline lysine-specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma. Cancer Res. 2018;78:2747–59. PubMed DOI PMC
Pertesi M, Vallée M, Wei X, Revuelta MV, Galia P, Demangel D et al. Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0452-6 .
Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72. PubMed DOI PMC
Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101. PubMed DOI PMC
Weißbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M, et al. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol. 2015;169:57–70. DOI
Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–97. PubMed DOI PMC
Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007;14:15–22. DOI
Robinson S, Oliver A, Chevassut T, Newbury S. The 3’ to 5’ exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules. 2015;5:1515–39. PubMed DOI PMC
Scales M, Chubb D, Dobbins SE, Johnson DC, Li N, Sternberg MJ et al. Search for rare protein altering variants influencing susceptibility to multiple myeloma. Oncotarget. 2017; 8. https://doi.org/10.18632/oncotarget.15874 .
Bolli N, Barcella M, Salvi E, D’Avila F, Vendramin A, De Philippis C, et al. Next-generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer. 2017;123:3701–8. DOI
Thomsen H, Campo C, Weinhold N, da Silva Filho MI, Pour L, Gregora E, et al. Genomewide association study on monoclonal gammopathy of unknown significance (MGUS). Eur J Haematol. 2017;99:70–79. DOI
Thomsen H, Chattopadhyay S, Weinhold N, Vodicka P, Vodickova L, Hoffmann P, et al. Genome-wide association study of monoclonal gammopathy of unknown significance (MGUS): comparison with multiple myeloma. Leukemia. 2019;33:1817–21. DOI
Weinhold N, Försti A, da Silva Filho MI, Nickel J, Campo C, Hoffmann P, et al. Immunoglobulin light-chain amyloidosis shares genetic susceptibility with multiple myeloma. Leukemia. 2014;28:2254–6. DOI
da Silva Filho MI, Försti A, Weinhold N, Meziane I, Campo C, Huhn S, et al. Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts: comparison with myeloma. Leukemia. 2017;31:1735–42. DOI
Grass S, Preuss K-D, Thome S, Weisenburger DD, Witt V, Lynch J, et al. Paraproteins of familial MGUS/multiple myeloma target family-typical antigens: hyperphosphorylation of autoantigens is a consistent finding in familial and sporadic MGUS/MM. Blood. 2011;118:635–7. DOI
Deciphering the genetics and mechanisms of predisposition to multiple myeloma
Identification of novel genetic loci for risk of multiple myeloma by functional annotation
Investigation of Rare Non-Coding Variants in Familial Multiple Myeloma
Does a Multiple Myeloma Polygenic Risk Score Predict Overall Survival of Patients with Myeloma?
Functional dissection of inherited non-coding variation influencing multiple myeloma risk
Epidemiology, genetics and treatment of multiple myeloma and precursor diseases
Prevalence of the GFI1-36N SNP in Multiple Myeloma Patients and Its Impact on the Prognosis
Characterization of rare germline variants in familial multiple myeloma