Investigation of Rare Non-Coding Variants in Familial Multiple Myeloma

. 2022 Dec 26 ; 12 (1) : . [epub] 20221226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36611892

Multiple myeloma (MM) is a plasma cell malignancy whereby a single clone of plasma cells over-propagates in the bone marrow, resulting in the increased production of monoclonal immunoglobulin. While the complex genetic architecture of MM is well characterized, much less is known about germline variants predisposing to MM. Genome-wide sequencing approaches in MM families have started to identify rare high-penetrance coding risk alleles. In addition, genome-wide association studies have discovered several common low-penetrance risk alleles, which are mainly located in the non-coding genome. Here, we further explored the genetic basis in familial MM within the non-coding genome in whole-genome sequencing data. We prioritized and characterized 150 upstream, 5' untranslated region (UTR) and 3' UTR variants from 14 MM families, including 20 top-scoring variants. These variants confirmed previously implicated biological pathways in MM development. Most importantly, protein network and pathway enrichment analyses also identified 10 genes involved in mitogen-activated protein kinase (MAPK) signaling pathways, which have previously been established as important MM pathways.

Zobrazit více v PubMed

van de Donk N.W.C.J., Pawlyn C., Yong K.L. Multiple myeloma. Lancet. 2021;397:410–427. doi: 10.1016/S0140-6736(21)00135-5. PubMed DOI

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Becker N. Epidemiology of Multiple Myeloma. In: Moehler T., Goldschmidt H., editors. Multiple Myeloma. Springer; Berlin, Heidelberg, Germany: 2011. pp. 25–35.

Waller R.G., Darlington T.M., Wei X., Madsen M.J., Thomas A., Curtin K., Coon H., Rajamanickam V., Musinsky J., Jayabalan D., et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. PLOS Genet. 2018;14:e1007111. doi: 10.1371/journal.pgen.1007111. PubMed DOI PMC

Pertesi M., Vallée M., Wei X., Revuelta M.V., Galia P., Demangel D., Oliver J., Foll M., Chen S., Perrial E., et al. Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia. 2019;33:2324–2330. doi: 10.1038/s41375-019-0452-6. PubMed DOI PMC

Catalano C., Paramasivam N., Blocka J., Giangiobbe S., Huhn S., Schlesner M., Weinhold N., Sijmons R., de Jong M., Langer C., et al. Characterization of rare germline variants in familial multiple myeloma. Blood Cancer J. 2021;11:33. doi: 10.1038/s41408-021-00422-6. PubMed DOI PMC

Went M., Sud A., Försti A., Halvarsson B.-M., Weinhold N., Kimber S., van Duin M., Thorleifsson G., Holroyd A., Johnson D.C., et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 2018;9:3707. doi: 10.1038/s41467-018-04989-w. PubMed DOI PMC

Pertesi M., Went M., Hansson M., Hemminki K., Houlston R.S., Nilsson B. Genetic predisposition for multiple myeloma. Leukemia. 2020;34:697–708. doi: 10.1038/s41375-019-0703-6. PubMed DOI

Frank C., Fallah M., Chen T., Mai E.K., Sundquist J., Försti A., Hemminki K. Search for familial clustering of multiple myeloma with any cancer. Leukemia. 2016;30:627–632. doi: 10.1038/leu.2015.279. PubMed DOI

Ellingford J.M., Ahn J.W., Bagnall R.D., Baralle D., Barton S., Campbell C., Downes K., Ellard S., Duff-Farrier C., FitzPatrick D.R., et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 2022;14:73. doi: 10.1186/s13073-022-01073-3. PubMed DOI PMC

Kumar A., Bandapalli O.R., Paramasivam N., Giangiobbe S., Diquigiovanni C., Bonora E., Eils R., Schlesner M., Hemminki K., Försti A. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci. Rep. 2018;8:11635. doi: 10.1038/s41598-018-29952-z. PubMed DOI PMC

Rentzsch P., Schubach M., Shendure J., Kircher M. CADD-Splice—Improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31. doi: 10.1186/s13073-021-00835-9. PubMed DOI PMC

Dayem Ullah A.Z., Oscanoa J., Wang J., Nagano A., Lemoine N.R., Chelala C. SNPnexus: Assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. Nucleic Acids Res. 2018;46:W109–W113. doi: 10.1093/nar/gky399. PubMed DOI PMC

Blocka J., Durie B.G.M., Huhn S., Mueller-Tidow C., Försti A., Hemminki K., Goldschmidt H. Familial Cancer: How to Successfully Recruit Families for Germline Mutations Studies? Multiple Myeloma as an Example. Clin. Lymphoma Myeloma Leuk. 2019;19:635–644.e632. doi: 10.1016/j.clml.2019.06.012. PubMed DOI

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997

Tarasov A., Vilella A.J., Cuppen E., Nijman I.J., Prins P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC

Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S.R.F., Wilkie A.O.M., McVean G., Lunter G., Consortium W.G.S. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014;46:912–918. doi: 10.1038/ng.3036. PubMed DOI PMC

Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Smigielski E.M., Sirotkin K., Ward M., Sherry S.T. dbSNP: A database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–355. doi: 10.1093/nar/28.1.352. PubMed DOI PMC

Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016;37:235–241. doi: 10.1002/humu.22932. PubMed DOI PMC

Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Ionita-Laza I., McCallum K., Xu B., Buxbaum J.D. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet. 2016;48:214–220. doi: 10.1038/ng.3477. PubMed DOI PMC

Fu Y., Liu Z., Lou S., Bedford J., Mu X.J., Yip K.Y., Khurana E., Gerstein M. FunSeq2: A framework for prioritizing noncoding regulatory variants in cancer. Genome Biol. 2014;15:480. doi: 10.1186/s13059-014-0480-5. PubMed DOI PMC

Rogers M.F., Shihab H.A., Mort M., Cooper D.N., Gaunt T.R., Campbell C. FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2017;34:511–513. doi: 10.1093/bioinformatics/btx536. PubMed DOI PMC

Smedley D., Schubach M., Jacobsen J.O.B., Köhler S., Zemojtel T., Spielmann M., Jäger M., Hochheiser H., Washington N.L., McMurry J.A., et al. A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. Am. J. Hum. Genet. 2016;99:595–606. doi: 10.1016/j.ajhg.2016.07.005. PubMed DOI PMC

Zhou J., Troyanskaya O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods. 2015;12:931–934. doi: 10.1038/nmeth.3547. PubMed DOI PMC

Thorvaldsdóttir H., Robinson J.T., Mesirov J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2012;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Cooper G.M., Stone E.A., Asimenos G., Green E.D., Batzoglou S., Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–913. doi: 10.1101/gr.3577405. PubMed DOI PMC

Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S., et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–1050. doi: 10.1101/gr.3715005. PubMed DOI PMC

Pollard K.S., Hubisz M.J., Rosenbloom K.R., Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–121. doi: 10.1101/gr.097857.109. PubMed DOI PMC

Lizio M., Harshbarger J., Shimoji H., Severin J., Kasukawa T., Sahin S., Abugessaisa I., Fukuda S., Hori F., Ishikawa-Kato S., et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015;16:22. doi: 10.1186/s13059-014-0560-6. PubMed DOI PMC

Encode An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC

Fornes O., Castro-Mondragon J.A., Khan A., van der Lee R., Zhang X., Richmond P.A., Modi B.P., Correard S., Gheorghe M., Baranašić D., et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92. doi: 10.1093/nar/gkz1001. PubMed DOI PMC

Tyner C., Barber G.P., Casper J., Clawson H., Diekhans M., Eisenhart C., Fischer C.M., Gibson D., Gonzalez J.N., Guruvadoo L., et al. The UCSC Genome Browser database: 2017 update. Nucleic Acids Res. 2017;45:D626–D634. doi: 10.1093/nar/gkw1134. PubMed DOI PMC

Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC

Ernst J., Kellis M. ChromHMM: Automating chromatin-state discovery and characterization. Nat. Methods. 2012;9:215–216. doi: 10.1038/nmeth.1906. PubMed DOI PMC

Hoffman M.M., Buske O.J., Wang J., Weng Z., Bilmes J.A., Noble W.S. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods. 2012;9:473–476. doi: 10.1038/nmeth.1937. PubMed DOI PMC

Betel D., Koppal A., Agius P., Sander C., Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90. doi: 10.1186/gb-2010-11-8-r90. PubMed DOI PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC

Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., Griss J., Sevilla C., Matthews L., Gong C., et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2021;50:D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC

The UniProt C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC

Ajore R., Niroula A., Pertesi M., Cafaro C., Thodberg M., Went M., Bao E.L., Duran-Lozano L., Lopez de Lapuente Portilla A., Olafsdottir T., et al. Functional dissection of inherited non-coding variation influencing multiple myeloma risk. Nat. Commun. 2022;13:151. doi: 10.1038/s41467-021-27666-x. PubMed DOI PMC

Hideshima T., Anderson K.C. Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers. 2021;13:216. doi: 10.3390/cancers13020216. PubMed DOI PMC

Hideshima T., Mitsiades C., Tonon G., Richardson P.G., Anderson K.C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat. Rev. Cancer. 2007;7:585–598. doi: 10.1038/nrc2189. PubMed DOI

Platanias L.C. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101:4667–4679. doi: 10.1182/blood-2002-12-3647. PubMed DOI

Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134. doi: 10.1016/j.cell.2010.06.011. PubMed DOI PMC

Arteaga C.L., Engelman J.A. ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25:282–303. doi: 10.1016/j.ccr.2014.02.025. PubMed DOI PMC

Wandinger S.K., Lahortiga I., Jacobs K., Klammer M., Jordan N., Elschenbroich S., Parade M., Jacoby E., Linders J.T., Brehmer D., et al. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling. PLoS ONE. 2016;11:e0146100. doi: 10.1371/journal.pone.0146100. PubMed DOI PMC

Sudhesh Dev S., Zainal Abidin S.A., Farghadani R., Othman I., Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front. Pharmacol. 2021;12:772510. doi: 10.3389/fphar.2021.772510. PubMed DOI PMC

Krens S.F., Spaink H.P., Snaar-Jagalska B.E. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–4990. doi: 10.1016/j.febslet.2006.08.025. PubMed DOI

Aghajanian C., Soignet S., Dizon D.S., Pien C.S., Adams J., Elliott P.J., Sabbatini P., Miller V., Hensley M.L., Pezzulli S., et al. A Phase I Trial of the Novel Proteasome Inhibitor PS341 in Advanced Solid Tumor Malignancies1. Clin. Cancer Res. 2002;8:2505–2511. PubMed

Shi C.X., Kortüm K.M., Zhu Y.X., Bruins L.A., Jedlowski P., Votruba P.G., Luo M., Stewart R.A., Ahmann J., Braggio E., et al. CRISPR Genome-Wide Screening Identifies Dependence on the Proteasome Subunit PSMC6 for Bortezomib Sensitivity in Multiple Myeloma. Mol. Cancer Ther. 2017;16:2862–2870. doi: 10.1158/1535-7163.MCT-17-0130. PubMed DOI PMC

Marziali F., Dizanzo M.P., Cavatorta A.L., Gardiol D. Differential expression of DLG1 as a common trait in different human diseases: An encouraging issue in molecular pathology. Biol. Chem. 2019;400:699–710. doi: 10.1515/hsz-2018-0350. PubMed DOI

Moser-Katz T., Gavile C.M., Barwick B.G., Lee K.P., Boise L.H. PDZ Proteins SCRIB and DLG1 Regulate Myeloma Cell Surface CD86 Expression, Growth, and Survival. Mol. Cancer Res. 2022;20:1122–1136. doi: 10.1158/1541-7786.MCR-21-0681. PubMed DOI PMC

Bhutani M., Foureau D.M., Atrash S., Voorhees P.M., Usmani S.Z. Extramedullary multiple myeloma. Leukemia. 2020;34:1–20. doi: 10.1038/s41375-019-0660-0. PubMed DOI

Dai S., Zhou Z., Chen Z., Xu G., Chen Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells. 2019;8:614. doi: 10.3390/cells8060614. PubMed DOI PMC

Wang J., Mikse O., Liao R.G., Li Y., Tan L., Janne P.A., Gray N.S., Wong K.K., Hammerman P.S. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167–2177. doi: 10.1038/onc.2014.161. PubMed DOI PMC

Salazar L., Kashiwada T., Krejci P., Muchowski P., Donoghue D., Wilcox W.R., Thompson L.M. A novel interaction between fibroblast growth factor receptor 3 and the p85 subunit of phosphoinositide 3-kinase: Activation-dependent regulation of ERK by p85 in multiple myeloma cells. Hum. Mol. Genet. 2009;18:1951–1961. doi: 10.1093/hmg/ddp116. PubMed DOI PMC

Lin M.Y., Zal T., Ch’en I.L., Gascoigne N.R., Hedrick S.M. A pivotal role for the multifunctional calcium/calmodulin-dependent protein kinase II in T cells: From activation to unresponsiveness. J. Immunol. 2005;174:5583–5592. doi: 10.4049/jimmunol.174.9.5583. PubMed DOI

Sui Y., Li X., Oh S., Zhang B., Freeman W.M., Shin S., Janknecht R. Opposite Roles of the JMJD1A Interaction Partners MDFI and MDFIC in Colorectal Cancer. Sci. Rep. 2020;10:8710. doi: 10.1038/s41598-020-65536-6. PubMed DOI PMC

Chen Y., Guo Y., Ge X., Itoh H., Watanabe A., Fujiwara T., Kodama T., Aburatani H. Elevated expression and potential roles of human Sp5, a member of Sp transcription factor family, in human cancers. Biochem. Biophys. Res. Commun. 2006;340:758–766. doi: 10.1016/j.bbrc.2005.12.068. PubMed DOI

Pérez-Sánchez C., Arias-de-la-Fuente C., Gómez-Ferrería M.A.A., Granadino B., Rey-Campos J. FHX.L and FHX.S, two isoforms of the human fork-head factor FHX (FOXJ2) with differential activity11Edited by M. Yaniv. J. Mol. Biol. 2000;301:795–806. doi: 10.1006/jmbi.2000.3999. PubMed DOI

Cao Y., Wang Y., Abi Saab W.F., Yang F., Pessin J.E., Backer J.M. NRBF2 regulates macroautophagy as a component of Vps34 Complex I. Biochem. J. 2014;461:315–322. doi: 10.1042/BJ20140515. PubMed DOI PMC

Huggins I.J., Bos T., Gaylord O., Jessen C., Lonquich B., Puranen A., Richter J., Rossdam C., Brafman D., Gaasterland T., et al. The WNT target SP5 negatively regulates WNT transcriptional programs in human pluripotent stem cells. Nat. Commun. 2017;8:1034. doi: 10.1038/s41467-017-01203-1. PubMed DOI PMC

Nakano S., Nishikawa M., Kobayashi T., Harlin E.W., Ito T., Sato K., Sugiyama T., Yamakawa H., Nagase T., Ueda H. The Rho guanine nucleotide exchange factor PLEKHG1 is activated by interaction with and phosphorylation by Src family kinase member FYN. J. Biol. Chem. 2022;298:101579. doi: 10.1016/j.jbc.2022.101579. PubMed DOI PMC

Yamada M., Ohkawara B., Ichimura N., Hyodo-Miura J., Urushiyama S., Shirakabe K., Shibuya H. Negative regulation of Wnt signalling by HMG2L1, a novel NLK-binding protein. Genes Cells Devoted Mol. Cell. Mech. 2003;8:677–684. doi: 10.1046/j.1365-2443.2003.00666.x. PubMed DOI

Swaminathan B., Thorleifsson G., Jöud M., Ali M., Johnsson E., Ajore R., Sulem P., Halvarsson B.M., Eyjolfsson G., Haraldsdottir V., et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 2015;6:7213. doi: 10.1038/ncomms8213. PubMed DOI PMC

Cai C., Tang Y.-D., Zhai J., Zheng C. The RING finger protein family in health and disease. Signal. Transduct. Target. Ther. 2022;7:300. doi: 10.1038/s41392-022-01152-2. PubMed DOI PMC

Nottingham R.M., Ganley I.G., Barr F.A., Lambright D.G., Pfeffer S.R. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J. Biol. Chem. 2011;286:33213–33222. doi: 10.1074/jbc.M111.261115. PubMed DOI PMC

Szulc B., Zadorozhna Y., Olczak M., Wiertelak W., Maszczak-Seneczko D. Novel Insights into Selected Disease-Causing Mutations within the SLC35A1 Gene Encoding the CMP-Sialic Acid Transporter. Int. J. Mol. Sci. 2020;22:304. doi: 10.3390/ijms22010304. PubMed DOI PMC

Lapaque N., Jahnke M., Trowsdale J., Kelly A.P. The HLA-DRalpha chain is modified by polyubiquitination. J. Biol. Chem. 2009;284:7007–7016. doi: 10.1074/jbc.M805736200. PubMed DOI PMC

Chen D., Yang X., Liu M., Zhang Z., Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther. 2021;28:1256–1268. doi: 10.1038/s41417-020-00291-4. PubMed DOI PMC

Mallampalli R.K., Kaercher L., Snavely C., Pulijala R., Chen B.B., Coon T., Zhao J., Agassandian M. Fbxl12 triggers G1 arrest by mediating degradation of calmodulin kinase I. Cell. Signal. 2013;25:2047–2059. doi: 10.1016/j.cellsig.2013.05.012. PubMed DOI PMC

Sewify E.M., Afifi O.A., Mosad E., Zaki A.H., El Gammal S.A. Cyclin D1 amplification in multiple myeloma is associated with multidrug resistance expression. Clin. Lymphoma Myeloma Leuk. 2014;14:215–222. doi: 10.1016/j.clml.2013.07.008. PubMed DOI

Weinhold N., Johnson D.C., Chubb D., Chen B., Försti A., Hosking F.J., Broderick P., Ma Y.P., Dobbins S.E., Hose D., et al. The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat. Genet. 2013;45:522–525. doi: 10.1038/ng.2583. PubMed DOI PMC

Beaty T.H., Ruczinski I., Murray J.C., Marazita M.L., Munger R.G., Hetmanski J.B., Murray T., Redett R.J., Fallin M.D., Liang K.Y., et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet. Epidemiol. 2011;35:469–478. doi: 10.1002/gepi.20595. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...