Spatial spread of Wolbachia in Rhagoletis cerasi populations

. 2018 May ; 14 (5) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29794009

Grantová podpora
I 2604 Austrian Science Fund FWF - Austria
P 26749 Austrian Science Fund FWF - Austria

The bacterial endosymbiont Wolbachia has been used to control insect pests owing to its ability to manipulate their life history and suppress infectious diseases. Therefore, knowledge on Wolbachia dynamics in natural populations is fundamental. The European cherry fruit fly, Rhagoletis cerasi, is infected with the Wolbachia strain wCer2, mainly present in southern and central European populations, and is currently spreading into wCer2-uninfected populations driven by high unidirectional cytoplasmic incompatibility. Here, we describe the distribution of wCer2 along two transition zones where the infection is spreading into wCer2-uninfected R. cerasi populations. Fine-scale sampling of 19 populations in the Czech Republic showed a smooth decrease of wCer2 frequency from south to north within a distance of less than 20 km. Sampling of 12 Hungarian populations, however, showed a sharp decline of wCer2 infection frequency within a few kilometres. We fitted a standard wave equation to our empirical data and estimated a Wolbachia wave speed of 1.9 km yr-1 in the Czech Republic and 1.0 km yr-1 in Hungary. Considering the univoltine life cycle and limited dispersal ability of R. cerasi, our study highlights a rapid Wolbachia spread in natural host populations.

Erratum v

PubMed

Zobrazit více v PubMed

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Micro. 6, 741–751. (10.1038/nrmicro1969) PubMed DOI

Hoffmann AA, Turelli M. 1997. Cytoplasmatic incompatibility in insects. In Influential passengers: inherited microorgansisms and arthropod reproduction (eds SL O'Neill, AA Hoffmann, JH Werren), pp. 42–80. Oxford, UK: Oxford University Press.

Turelli M, Hoffmann AA. 1991. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442. (10.1038/353440a0) PubMed DOI

O'Neill SL, Giordano R, Colbert A, Karr T, Robertson H. 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl Acad. Sci. USA 89, 2699–2702. (10.1073/pnas.89.7.2699) PubMed DOI PMC

Schuler H, et al. 2013. Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol. Ecol. 22, 4101–4111. (10.1111/mec.12362) PubMed DOI

Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH. 2008. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol. Ecol. 17, 557–569. (10.1111/j.1365-294X.2007.03608.x) PubMed DOI

Engelstädter J, Hurst GDD. 2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149. (10.1146/annurev.ecolsys.110308.120206) DOI

Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 9, e1003607 (10.1371/journal.ppat.1003607) PubMed DOI PMC

Barton NH, Turelli M. 2011. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Nat. 178, E48–E75. (10.1086/661246) PubMed DOI

Schmidt TL, et al. 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 15, e2001894 (10.1371/journal.pbio.2001894) PubMed DOI PMC

Boller E, Prokopy R. 1976. Bionomics and management of Rhagoletis. Annu. Rev. Entomol. 21, 223–246. (10.1146/annurev.en.21.010176.001255) DOI

Riegler M, Stauffer C. 2002. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 11, 2425–2434. (10.1046/j.1365-294X.2002.01614.x) PubMed DOI

Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ, Stauffer C. 2009. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 18, 3816–3830. (10.1111/j.1365-294X.2009.04321.x) PubMed DOI

Boller E, Bush GL. 1974. Evidence for genetic variation in populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on physiological parameters and hybridization experiments. Entomol. Exp. Appl. 17, 279–293. (10.1111/j.1570-7458.1974.tb00345.x) DOI

Schuler H, et al. 2016. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609. (10.1111/mec.13571) PubMed DOI PMC

Boller E, Remund U. 1982. Field feasibility study for the application of SIT in Rhagoletis cerasi L. in northwest Switzerland (1976–79). In Fruit Flies of Economic Importance. Proc. CEC/IOBC Int. Symp. Athens, November 1982 (ed. Calvalloro R.), pp. 366–370. Rotterdam, The Netherlands: Balkema.

Hoffmann AA, et al. 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454–457. (10.1038/nature10356) PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4092905

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...