Spatial spread of Wolbachia in Rhagoletis cerasi populations
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 2604
Austrian Science Fund FWF - Austria
P 26749
Austrian Science Fund FWF - Austria
PubMed
29794009
PubMed Central
PMC6012700
DOI
10.1098/rsbl.2018.0161
PII: rsbl.2018.0161
Knihovny.cz E-zdroje
- Klíčová slova
- European cherry fruit fly, cytoplasmic incompatibility, endosymbiont, modelling,
- MeSH
- prostorová analýza * MeSH
- Tephritidae mikrobiologie MeSH
- Wolbachia fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Maďarsko MeSH
The bacterial endosymbiont Wolbachia has been used to control insect pests owing to its ability to manipulate their life history and suppress infectious diseases. Therefore, knowledge on Wolbachia dynamics in natural populations is fundamental. The European cherry fruit fly, Rhagoletis cerasi, is infected with the Wolbachia strain wCer2, mainly present in southern and central European populations, and is currently spreading into wCer2-uninfected populations driven by high unidirectional cytoplasmic incompatibility. Here, we describe the distribution of wCer2 along two transition zones where the infection is spreading into wCer2-uninfected R. cerasi populations. Fine-scale sampling of 19 populations in the Czech Republic showed a smooth decrease of wCer2 frequency from south to north within a distance of less than 20 km. Sampling of 12 Hungarian populations, however, showed a sharp decline of wCer2 infection frequency within a few kilometres. We fitted a standard wave equation to our empirical data and estimated a Wolbachia wave speed of 1.9 km yr-1 in the Czech Republic and 1.0 km yr-1 in Hungary. Considering the univoltine life cycle and limited dispersal ability of R. cerasi, our study highlights a rapid Wolbachia spread in natural host populations.
Zobrazit více v PubMed
Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Micro. 6, 741–751. (10.1038/nrmicro1969) PubMed DOI
Hoffmann AA, Turelli M. 1997. Cytoplasmatic incompatibility in insects. In Influential passengers: inherited microorgansisms and arthropod reproduction (eds SL O'Neill, AA Hoffmann, JH Werren), pp. 42–80. Oxford, UK: Oxford University Press.
Turelli M, Hoffmann AA. 1991. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442. (10.1038/353440a0) PubMed DOI
O'Neill SL, Giordano R, Colbert A, Karr T, Robertson H. 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl Acad. Sci. USA 89, 2699–2702. (10.1073/pnas.89.7.2699) PubMed DOI PMC
Schuler H, et al. 2013. Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol. Ecol. 22, 4101–4111. (10.1111/mec.12362) PubMed DOI
Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH. 2008. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol. Ecol. 17, 557–569. (10.1111/j.1365-294X.2007.03608.x) PubMed DOI
Engelstädter J, Hurst GDD. 2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149. (10.1146/annurev.ecolsys.110308.120206) DOI
Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 9, e1003607 (10.1371/journal.ppat.1003607) PubMed DOI PMC
Barton NH, Turelli M. 2011. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Nat. 178, E48–E75. (10.1086/661246) PubMed DOI
Schmidt TL, et al. 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 15, e2001894 (10.1371/journal.pbio.2001894) PubMed DOI PMC
Boller E, Prokopy R. 1976. Bionomics and management of Rhagoletis. Annu. Rev. Entomol. 21, 223–246. (10.1146/annurev.en.21.010176.001255) DOI
Riegler M, Stauffer C. 2002. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 11, 2425–2434. (10.1046/j.1365-294X.2002.01614.x) PubMed DOI
Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ, Stauffer C. 2009. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 18, 3816–3830. (10.1111/j.1365-294X.2009.04321.x) PubMed DOI
Boller E, Bush GL. 1974. Evidence for genetic variation in populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on physiological parameters and hybridization experiments. Entomol. Exp. Appl. 17, 279–293. (10.1111/j.1570-7458.1974.tb00345.x) DOI
Schuler H, et al. 2016. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609. (10.1111/mec.13571) PubMed DOI PMC
Boller E, Remund U. 1982. Field feasibility study for the application of SIT in Rhagoletis cerasi L. in northwest Switzerland (1976–79). In Fruit Flies of Economic Importance. Proc. CEC/IOBC Int. Symp. Athens, November 1982 (ed. Calvalloro R.), pp. 366–370. Rotterdam, The Netherlands: Balkema.
Hoffmann AA, et al. 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454–457. (10.1038/nature10356) PubMed DOI
figshare
10.6084/m9.figshare.c.4092905