Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems

. 2022 Feb 24 ; 22 (5) : . [epub] 20220224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35270941

Grantová podpora
2210/2022-2023 University of Hradec Kralove, Czech Republic

With the advancement of science and technology, new complex optimization problems have emerged, and the achievement of optimal solutions has become increasingly important. Many of these problems have features and difficulties such as non-convex, nonlinear, discrete search space, and a non-differentiable objective function. Achieving the optimal solution to such problems has become a major challenge. To address this challenge and provide a solution to deal with the complexities and difficulties of optimization applications, a new stochastic-based optimization algorithm is proposed in this study. Optimization algorithms are a type of stochastic approach for addressing optimization issues that use random scanning of the search space to produce quasi-optimal answers. The Selecting Some Variables to Update-Based Algorithm (SSVUBA) is a new optimization algorithm developed in this study to handle optimization issues in various fields. The suggested algorithm's key principles are to make better use of the information provided by different members of the population and to adjust the number of variables used to update the algorithm population during the iterations of the algorithm. The theory of the proposed SSVUBA is described, and then its mathematical model is offered for use in solving optimization issues. Fifty-three objective functions, including unimodal, multimodal, and CEC 2017 test functions, are utilized to assess the ability and usefulness of the proposed SSVUBA in addressing optimization issues. SSVUBA's performance in optimizing real-world applications is evaluated on four engineering design issues. Furthermore, the performance of SSVUBA in optimization was compared to the performance of eight well-known algorithms to further evaluate its quality. The simulation results reveal that the proposed SSVUBA has a significant ability to handle various optimization issues and that it outperforms other competitor algorithms by giving appropriate quasi-optimal solutions that are closer to the global optima.

Zobrazit více v PubMed

Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI

Fletcher R. Practical Methods of Optimization. John Wiley & Sons; Hoboken, NJ, USA: 2013.

Cavazzuti M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics. Springer; Berlin/Heidelberg, Germany: 2013. Deterministic Optimization; pp. 77–102.

Dehghani M., Montazeri Z., Dehghani A., Samet H., Sotelo C., Sotelo D., Ehsanifar A., Malik O.P., Guerrero J.M., Dhiman G. DM: Dehghani Method for modifying optimization algorithms. Appl. Sci. 2020;10:7683. doi: 10.3390/app10217683. DOI

Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI

Banerjee A., De S.K., Majumder K., Das V., Giri D., Shaw R.N., Ghosh A. Advanced Computing and Intelligent Technologies. Springer; Berlin/Heidelberg, Germany: 2022. Construction of effective wireless sensor network for smart communication using modified ant colony optimization technique; pp. 269–278.

Zhang X., Dahu W. Application of artificial intelligence algorithms in image processing. J. Vis. Commun. Image Represent. 2019;61:42–49. doi: 10.1016/j.jvcir.2019.03.004. DOI

Djenouri Y., Belhadi A., Belkebir R. Bees swarm optimization guided by data mining techniques for document information retrieval. Expert Syst. Appl. 2018;94:126–136. doi: 10.1016/j.eswa.2017.10.042. DOI

Chaudhuri A., Sahu T.P. Feature selection using Binary Crow Search Algorithm with time varying flight length. Expert Syst. Appl. 2021;168:114288. doi: 10.1016/j.eswa.2020.114288. DOI

Singh T., Saxena N., Khurana M., Singh D., Abdalla M., Alshazly H. Data Clustering Using Moth-Flame Optimization Algorithm. Sensors. 2021;21:4086. doi: 10.3390/s21124086. PubMed DOI PMC

Fathy A., Alharbi A.G., Alshammari S., Hasanien H.M. Archimedes optimization algorithm based maximum power point tracker for wind energy generation system. Ain Shams Eng. J. 2022;13:101548. doi: 10.1016/j.asej.2021.06.032. DOI

Hasan M.Z., Al-Rizzo H. Beamforming optimization in internet of things applications using robust swarm algorithm in conjunction with connectable and collaborative sensors. Sensors. 2020;20:2048. doi: 10.3390/s20072048. PubMed DOI PMC

Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI

Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC

Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC

Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI

Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI

Kennedy J., Eberhart R. Particle Swarm Optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, Australia. 27 November–1 December 1995; pp. 1942–1948.

Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI

Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. DOI

Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI

Geem Z.W., Kim J.H., Loganathan G.V. A new heuristic optimization algorithm: Harmony search. Simulation. 2001;76:60–68. doi: 10.1177/003754970107600201. DOI

Li X.-l. An optimizing method based on autonomous animats: Fish-swarm algorithm. Syst. Eng.-Theory Pract. 2002;22:32–38.

Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI

Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI

Zamani H., Nadimi-Shahraki M.H., Gandomi A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021;104:104314. doi: 10.1016/j.engappai.2021.104314. DOI

Zamani H., Nadimi-Shahraki M.H., Gandomi A.H. CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput. 2019;85:105583. doi: 10.1016/j.asoc.2019.105583. DOI

Hayyolalam V., Kazem A.A.P. Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020;87:103249. doi: 10.1016/j.engappai.2019.103249. DOI

Połap D., Woźniak M. Red fox optimization algorithm. Expert Syst. Appl. 2021;166:114107. doi: 10.1016/j.eswa.2020.114107. DOI

Zhao W., Wang L., Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022;388:114194. doi: 10.1016/j.cma.2021.114194. DOI

Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI

Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. DOI

Zamani H., Nadimi-Shahraki M.H., Gandomi A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022;392:114616. doi: 10.1016/j.cma.2022.114616. DOI

Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.

Awad N., Ali M., Liang J., Qu B., Suganthan P. Problem Definitions Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Kyungpook National University; Daegu, Korea: 2016. Technology Report.

Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin/Heidelberg, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.

Nadimi-Shahraki M.H., Fatahi A., Zamani H., Mirjalili S., Abualigah L., Abd Elaziz M. Migration-based moth-flame optimization algorithm. Processes. 2021;9:2276. doi: 10.3390/pr9122276. PubMed DOI PMC

Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI

Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.

Mezura-Montes E., Coello C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Mexico City, Mexico. 25–30 October 2021; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems

. 2023 Oct 01 ; 8 (6) : . [epub] 20231001

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...