Identification of novel genetic loci for risk of multiple myeloma by functional annotation
Language English Country Great Britain, England Media print-electronic
Document type Letter, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural
Grant support
P50 CA186781
NCI NIH HHS - United States
U01 CA271014
NCI NIH HHS - United States
U01 CA249955
NCI NIH HHS - United States
PubMed
37723249
PubMed Central
PMC10624610
DOI
10.1038/s41375-023-02022-8
PII: 10.1038/s41375-023-02022-8
Knihovny.cz E-resources
- MeSH
- Genome-Wide Association Study MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Loci MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Multiple Myeloma * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Biomedical Center Faculty of Medicine Charles University Pilsen Pilsen Czech Republic
Cancer Control Research BC Cancer Vancouver BC Canada
Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC Australia
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
Centre for Individualised Infection Medicine Hannover Germany
Department of Biochemistry and Molecular Biology 1 University of Granada Granada Spain
Department of Biology University of Pisa Pisa Italy
Department of Experimental Hematooncology Medical University of Lublin Lublin Poland
Department of Haematology and Transplantology Medical University of Gdańsk Gdańsk Poland
Department of Hematology Holycross Cancer Center Kielce Poland
Department of Hematology Institute of Hematology and Transfusion Medicine Warsaw Poland
Department of Hematology Provincial Polyclinical Hospital in Torun Torun Poland
Department of Hematology Rydygier Specialistic Hospital Cracow Poland
Department of Hematology Semmelweis University Budapest Hungary
Department of Hematology University Hospital Crakow Poland
Department of Hematology University Hospital No 2 in Bydgoszcz Bydgoszcz Poland
Department of Internal Medicine 5 Heidelberg University Hospital Heidelberg Germany
Department of Pathology School of Medicine at the University of Alabama Birmingham AL USA
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Epidemiology Department of Health Sciences Research Mayo Clinic Rochester MN USA
Division of Hematology and Huntsman Cancer Institute University of Utah Salt Lake City UT USA
Division of Hematology Department of Internal Medicine Mayo Clinic Rochester MN USA
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
Hematology and Medical Oncology Department University Hospital Morales Meseguer IMIB Murcia Spain
Hematology Department Jagiellonian University Medical College Cracow Poland
Hematology Department Virgen de las Nieves University Hospital Granada Spain
Hematology Division Chaim Sheba Medical Center Tel Hashomer Israel
Hematology Unit Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
Hopp Children's Cancer Center Heidelberg Germany
ICVS 3B's PT Government Associate Laboratory Braga Guimarães Portugal
INSERM 1052 CNRS 5286 CRCL Lyon France
Institute of Medical Sciences College of Medical Sciences University of Rzeszow Rzeszow Poland
Institute of Molecular Medicine University of Southern Denmark Odense Denmark
Institute of Regional Research University of Southern Denmark Odense Denmark
Instituto de Investigación Biosanitaria IBs Granada Granada Spain
National Centre for Tumour Diseases University Hospital Heidelberg Heidelberg Germany
National Research Centre for the Working Environment Copenhagen Denmark
St John's Hospital Budapest Hungary
U O Dipartimento di Ematologia Azienda USL Toscana Nord Ovest Livorno Italy
See more in PubMed
Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Prim. 2017;3:17046. doi: 10.1038/nrdp.2017.46. PubMed DOI
Georgakopoulou R, Fiste O, Sergentanis TN, Andrikopoulou A, Zagouri F, Gavriatopoulou M, et al. Occupational Exposure and Multiple Myeloma Risk: An Updated Review of Meta-Analyses. J Clin Med. 2021;10:4179. doi: 10.3390/jcm10184179. PubMed DOI PMC
Kristinsson SY, Bjorkholm M, Goldin LR, Blimark C, Mellqvist UH, Wahlin A, et al. Familial Aggregation of Multiple Myeloma and Its Precursor Monoclonal Gammopathy of Undetermined Significance (MGUS): A Population-Based Study in Sweden. Blood. 2008;112:1678. doi: 10.1182/blood.V112.11.1678.1678. DOI
Pertesi M, Went M, Hansson M, Hemminki K, Houlston RS, Nilsson B. Genetic predisposition for multiple myeloma. Leukemia. 2020;34:697–708. doi: 10.1038/s41375-019-0703-6. PubMed DOI
Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, et al. The PANcreatic Disease ReseArch (PANDoRA) consortium: Ten years’ experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol. 2023;186:104020. doi: 10.1016/j.critrevonc.2023.104020. PubMed DOI
Yu Y, Mao L, Cheng Z, Zhu X, Cui J, Fu X, et al. A novel regQTL-SNP and the risk of lung cancer: a multi-dimensional study. Arch Toxicol. 2021;95:3815–27. doi: 10.1007/s00204-021-03170-5. PubMed DOI
Iversen ES, Lipton G, Clyde MA, Monteiro ANA. Functional annotation signatures of disease susceptibility loci improve SNP association analysis. BMC Genom. 2014;15:398. doi: 10.1186/1471-2164-15-398. PubMed DOI PMC
Liu W, Li M, Zhang W, Zhou G, Wu X, Wang J, et al. Leveraging functional annotation to identify genes associated with complex diseases. PLOS Comput Biol. 2020;16:e1008315. doi: 10.1371/journal.pcbi.1008315. PubMed DOI PMC
Kim PKM, Armstrong M, Liu Y, Yan P, Bucher B, Zuckerbraun BS, et al. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene. 2004;23:1125–35. doi: 10.1038/sj.onc.1207023. PubMed DOI
Armstrong MJ, Stang MT, Liu Y, Gao J, Ren B, Zuckerbraun BS, et al. Interferon Regulatory Factor 1 (IRF-1) induces p21WAF1/CIP1 dependent cell cycle arrest and p21WAF1/CIP1 independent modulation of survivin in cancer cells. Cancer Lett. 2012;319:56–65. doi: 10.1016/j.canlet.2011.12.027. PubMed DOI PMC
Segueni J, Noordermeer D. CTCF: A misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J. 2022;20:2685–98. doi: 10.1016/j.csbj.2022.05.044. PubMed DOI PMC
Walter SA, Cutler RE, Martinez R, Gishizky M, Hill RJ. Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. J Biol Chem. 2003;278:18221–8. doi: 10.1074/jbc.M212556200. PubMed DOI
Bi L, Jia S, Hu W, Su X, Chen X, Tang H. Systematic analysis of prognostic significance, functional enrichment and immune implication of STK10 in acute myeloid leukemia. BMC Med Genom. 2022;15:101. doi: 10.1186/s12920-022-01251-7. PubMed DOI PMC
Zhang L, Lu SY, Guo R, Ma JX, Tang LY, Wang JJ, et al. STK10 knockout inhibits cell migration and promotes cell proliferation via modulating the activity of ERM and p38 MAPK in prostate cancer cells. Exp Ther Med. 2021;22:851. doi: 10.3892/etm.2021.10283. PubMed DOI PMC
Burger R. Impact of Interleukin-6 in Hematological Malignancies. TMH. 2013;40:336–43. PubMed PMC
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol. 2019;9:788. doi: 10.3389/fendo.2018.00788. PubMed DOI PMC