International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)

. 2020 Oct 16 ; 10 (10) : 102. [epub] 20201016

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33067414

Grantová podpora
P50 CA186781 NCI NIH HHS - United States
R01 CA107476 NCI NIH HHS - United States
R01 CA168762 NCI NIH HHS - United States

Odkazy

PubMed 33067414
PubMed Central PMC7567803
DOI 10.1038/s41408-020-00366-3
PII: 10.1038/s41408-020-00366-3
Knihovny.cz E-zdroje

Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2-3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≥3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable.

Cedars Sinai Outpatient Cancer Center Los Angeles CA USA

Clinica Universidad de Navarra CIMA CIBERONC IDISNA Pamplona Spain

Department of Clinical Hematology Centro Hospitalar e Universitário de Coimbra Coimbra Portugal

Department of Experimental Diagnostic and Specialty Medicine DIMES University of Bologna Bologna Italy

Department of Haematology London North West Healthcare London UK

Department of Hemato Oncology Hallym University Dongtan Sacred Heart Hospital Hwasung South Korea

Department of Hematology Amyloidosis and Myeloma Unit Hospital Clínic IDIBAPS University of Barcelona Barcelona Spain

Department of Hematology and Medical Oncology Atrium Health Levine Cancer Institute Charlotte NC USA

Department of Hematology Hopital de La Milétrie CHU Poitiers France

Department of Hematology Hospital de Santa Maria Lisboa Portugal

Department of Hematology Hospital Italiano de Buenos Aires Buenos Aires Argentina

Department of Hematology Sahlgrenska University Hospital Goteborg and Skane University Hospital Lund Sweden

Department of HematoOncology University Hospital Ostrava and Faculty of Medicine Ostrava University Ostrava Czech Republic

Department of Internal Medicine 5 University Medical Hospital and National Center of Tumor Diseases Heidelberg Germany

Department of Medicine Center for Oncology Hematology and Palliative Care Wilhelminenspital Vienna Austria

Department of Medicine Surgery and Neurosciences University of Siena Siena Italy

Department of Molecular Medicine Amyloidosis Research and Treatment Center Foundation 'Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo' University of Pavia Pavia Italy

Division of Hematology Mayo Clinic Rochester MN USA

Hematology and Medical Oncology Department of Clinical Therapeutics National and Kapodistrian University of Athens School of Medicine Athens Greece

Hematology Department of Internal Medicine Seoul St Mary's Hospital The Catholic University of Korea Seoul South Korea

Janssen Pharmaceuticals Horsham PA USA

Perlmutter Cancer Center NY Langone Health New York NY USA

Service d'Hématologie Hôpital Pitié Salpêtrière Paris France

Servicio de Hematologia Hospital Universitario de Salamanca Centro de Investigación del Cáncer Instituto de Biología Molecular y Cellular del Cáncer Salamanca Spain

Zobrazit více v PubMed

Kyle RA, Greipp PR. Smoldering multiple myeloma. N. Engl. J. Med. 1980;302:1347–1349. doi: 10.1056/NEJM198006123022405. PubMed DOI

Rajkumar SV, Landgren O, Mateos MV. Smoldering multiple myeloma. Blood. 2015;125:3069–3075. doi: 10.1182/blood-2014-09-568899. PubMed DOI PMC

Kyle RA, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 2007;356:2582–2590. doi: 10.1056/NEJMoa070389. PubMed DOI

Dispenzieri A, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood. 2008;111:785–789. doi: 10.1182/blood-2007-08-108357. PubMed DOI PMC

Perez-Persona E, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110:2586–2592. doi: 10.1182/blood-2007-05-088443. PubMed DOI

Mateos MV, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N. Engl. J. Med. 2013;369:438–447. doi: 10.1056/NEJMoa1300439. PubMed DOI

Lonial S, et al. E3A06: Randomized phase III trial of lenalidomide versus observation alone in patients with asymptomatic high-risk smoldering multiple myeloma. J. Clin. Oncol. 2019;37:8001–8001. doi: 10.1200/JCO.2019.37.15_suppl.8001. DOI

Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI

Zamagni E, et al. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia. 2016;30:417–422. doi: 10.1038/leu.2015.291. PubMed DOI

Rajkumar SV, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013;27:1738–1744. doi: 10.1038/leu.2013.86. PubMed DOI PMC

Fernandez de Larrea C, et al. Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression. Leukemia. 2018;32:1427–1434. doi: 10.1038/s41375-018-0013-4. PubMed DOI

Ravi P, et al. Changes in uninvolved immunoglobulins during induction therapy for newly diagnosed multiple myeloma. Blood Cancer J. 2017;7:e569. doi: 10.1038/bcj.2017.46. PubMed DOI PMC

Gonzalez-Calle V, et al. Bence Jones proteinuria in smoldering multiple myeloma as a predictor marker of progression to symptomatic multiple myeloma. Leukemia. 2016;30:2026–2031. doi: 10.1038/leu.2016.123. PubMed DOI

Dhodapkar MV, et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120) Blood. 2014;123:78–85. doi: 10.1182/blood-2013-07-515239. PubMed DOI PMC

Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI

Svetnik V, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comp. Sci. 2003;43:1947–1958. doi: 10.1021/ci034160g. PubMed DOI

Massaro JM, et al. Managing and analysing data from a large-scale study on Framingham offspring relating brain structure to cognitive function. Stat. Med. 2004;23:351–367. doi: 10.1002/sim.1743. PubMed DOI

Kyle RA, Rajkumar SV. Multiple myeloma. N. Engl. J. Med. 2004;351:1860–1873. doi: 10.1056/NEJMra041875. PubMed DOI

Kumar SK, Rajkumar SV. The multiple myelomas - current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 2018;15:409–421. doi: 10.1038/s41571-018-0018-y. PubMed DOI

Witzig TE, et al. A phase III randomized trial of thalidomide plus zoledronic acid versus zoledronic acid alone in patients with asymptomatic multiple myeloma. Leukemia. 2013;27:220–225. doi: 10.1038/leu.2012.236. PubMed DOI PMC

Rajkumar SV, et al. Thalidomide as initial therapy for early-stage myeloma. Leukemia. 2003;17:775–779. doi: 10.1038/sj.leu.2402866. PubMed DOI

Lakshman A, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8:59. doi: 10.1038/s41408-018-0077-4. PubMed DOI PMC

Misund K, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34:322–326. doi: 10.1038/s41375-019-0543-4. PubMed DOI PMC

Bustoros, M. et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J. Clin. Oncol. 38, 2380–2389 (2020). PubMed PMC

Manier S, Kawano Y, Bianchi G, Roccaro AM, Ghobrial IM. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr. Opin. Hematol. 2016;23:426–433. doi: 10.1097/MOH.0000000000000259. PubMed DOI

Dhodapkar MV. MGUS to myeloma: a mysterious gammopathy of underexplored significance. Blood. 2016;128:2599–2606. doi: 10.1182/blood-2016-09-692954. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...