Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior

. 2014 ; 8 () : 101. [epub] 20140328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24734010

Clinical and experimental studies suggest possible risks associated with the repeated administration of benzodiazepines (BZDs) during the prenatal or early postnatal period on further development and behavior. In the present study, we assess short- and long-term effects of early exposure to clonazepam (CZP) on cognitive tasks. CZP (0.5 or 1.0 mg/kg/day) was administered from postnatal day (P)7 until P11, and animals were exposed to the following behavioral tests at different developmental stages: (1) a homing response (HR) test, which exploits the motivation of a rat pup to reach its home nest, was administered on P12, P15, P18 and P23 rats; (2) passive avoidance was tested in three trials (at 0, 2 and 24 h intervals) on P12, P15, P18, P25 and P32 rats; (3) within- and between-session habituation was tested in an open field (OF) at P70; and (4) a long-term memory (LTM) version of the Morris water maze (MWM) was tested at P80. A 1.0 mg/kg dose of CZP extended latency in the HR and decreased the number of correct responses when tested at P12 and P23. In the first trial of the passive avoidance test, latency to enter a dark compartment was shorter in the CZP-exposed rats. Both treated and control animals older than P15 learned the passive-avoidance response at the same rate. Irrespective of the treatments, all adult animals showed within-session habituation. Between-session habituation, however, was found only in the controls. With respect to the MWM test, all animals learned to reach the platform, but animals exposed to higher doses of CZP spent more time swimming in the first acquisition test. No difference between groups was found in a repeated acquisition test (10 and 40 days after the first acquisition test). The results of the present study show that even short-term exposure to CZP alters behavioral responsiveness in pre-weaning, juvenile and adult animals. Not only were changes observed on conventional cognitive tests in our study, but the changes also seem to be related to emotional/motivational responsiveness.

Zobrazit více v PubMed

Ainge J. A., Langston R. F. (2012). Ontogeny of neural circuits underlying spatial memory in the rat. Front. Neural Circuits 6:8 10.3389/fncir.2012.00008 PubMed DOI PMC

Altman J., Sudarshan K. (1975). Postnatal development of locomotion in the laboratory rat. Anim. Behav. 23, 896–920 10.1016/0003-3472(75)90114-1 PubMed DOI

Avishai-Eliner S., Brunson K. L., Sandman C. A., Baram T. Z. (2002). Stressed-out, or in (utero)? Trends Neurosci. 25, 518–524 10.1016/s0166-2236(02)02241-5 PubMed DOI PMC

Carey G. J., Billard W., Binch H., 3rd, Cohen-Williams M., Crosby G., Grzelak M., et al. (2001). SCH 57790, a selective muscarinic M(2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur. J. Pharmacol. 431, 189–200 10.1016/s0014-2999(01)01440-6 PubMed DOI

Clancy B., Finlay B. L., Darlington R. B., Anand K. J. (2007). Extrapolating brain development from experimental species to humans. Neurotoxicology 28, 931–937 10.1016/j.neuro.2007.01.014 PubMed DOI PMC

D’Hooge R., De Deyn P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60–90 10.1016/s0165-0173(01)00067-4 PubMed DOI

Dobbing J., Sands J. (1979). Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83 10.1016/0378-3782(79)90022-7 PubMed DOI

File S. E. (1986). The effects of neonatal administration of clonazepam on passive avoidance and on social, aggressive and exploratory behavior of adolescent male rats. Neurobehav. Toxicol. Teratol. 8, 447–452 PubMed

Frieder B., Epstein S., Grimm V. E. (1984). The effects of exposure to diazepam during various stages of gestation or during lactation on the development and behavior of rat pups. Psychopharmacology (Berl) 83, 51–55 10.1007/bf00427422 PubMed DOI

Hoogerkamp A., Arends R. H., Bomers A. M., Mandema J. W., Voskuyl R. A., Danhof M. (1996). Pharmacokinetic/pharmacodynamic relationship of benzodiazepines in the direct cortical stimulation model of anticonvulsant effect. J. Pharmacol. Exp. Ther. 279, 803–812 PubMed

Izquierdo I., Medina J. H., Vianna M. R., Izquierdo L. A., Barros D. M. (1999). Separate mechanisms for short- and long-term memory. Behav. Brain Res. 103, 1–11 10.1016/s0166-4328(99)00036-4 PubMed DOI

Kubová H., Mareš P. (1989). Influence of clonazepam on epileptic after-discharges induced by perforant path stimulation in rats. Arch. Int. Pharmacodyn. Ther. 299, 35–43 PubMed

Kubová H., Mareš P., Vorlíček J. (1993). Stable anticonvulsant action of benzodiazepines during development in rats. J. Pharm. Pharmacol. 45, 807–810 10.1111/j.2042-7158.1993.tb05690.x PubMed DOI

Lader M. (2011). Benzodiazepines revisited–will we ever learn? Addiction 106, 2086–2109 10.1111/j.1360-0443.2011.03563.x PubMed DOI

Laviola G., Pick C. G., Yanai J., Alleva E. (1992). Eight-arm maze performance, neophobia, and hippocampal cholinergic alterations after prenatal oxazepam in mice. Brain Res. Bull. 29, 609–616 10.1016/0361-9230(92)90130-p PubMed DOI

Leussis M. P., Bolivar V. J. (2006). Habituation in rodents: a review of behavior, neurobiology, and genetics. Neurosci. Biobehav. Rev. 30, 1045–1064 10.1016/j.neubiorev.2006.03.006 PubMed DOI

Livezey G. T., Marczynski T. J., Isaac L. (1986). Prenatal diazepam: chronic anxiety and deficits in brain receptors in mature rat progeny. Neurobehav. Toxicol. Teratol. 8, 425–432 PubMed

Marczynski T. J., Hawkins M. C., Swann P. G., Krivograd A. F., Patel M. K., Dugich M. (1988). Perinatal upregulation of benzodiazepine receptor ontogenesis: “fearless” and more efficient goal-directed behavior of adult rat progenies. Neurotoxicol. Teratol. 10, 101–111 10.1016/0892-0362(88)90073-6 PubMed DOI

Markowitz G. J., Kadam S. D., Boothe D. M., Irving N. D., Comi A. M. (2010). The pharmacokinetics of commonly used antiepileptic drugs in immature CD1 mice. Neuroreport 21, 452–456 10.1097/wnr.0b013e328338ba18 PubMed DOI PMC

Mikulecká A., Mareš P. (2009). Effects of mGluR5 and mGluR1 antagonists on anxiety-like behavior and learning in developing rats. Behav. Brain Res. 204, 133–139 10.1016/j.bbr.2009.05.032 PubMed DOI

Mikulecká A., Mareš P., Kubová H. (2011). Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy Behav. 20, 12–19 10.1016/j.yebeh.2010.10.021 PubMed DOI

Moghaddam M., Bureš J. (1996). Contribution of egocentric spatial memory to place navigation of rats in the Morris water maze. Behav. Brain Res. 78, 121–129 10.1016/0166-4328(95)00240-5 PubMed DOI

Morellini F., Schachner M. (2006). Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. Eur. J. Neurosci. 23, 1255–1268 10.1111/j.1460-9568.2006.04657.x PubMed DOI

Morris R. (1981). Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 10.1016/0023-9690(81)90020-5 DOI

Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 10.1016/0165-0270(84)90007-4 PubMed DOI

Myhrer T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev. 41, 268–287 10.1016/s0165-0173(02)00268-0 PubMed DOI

Nardi A. E., Perna G. (2006). Clonazepam in the treatment of psychiatric disorders: an update. Int. Clin. Psychopharmacol. 21, 131–142 10.1097/01.yic.0000194379.65460.a6 PubMed DOI

Rossier J., Schenk F. (2003). Olfactory and/or visual cues for spatial navigation through ontogeny: olfactory cues enable the use of visual cues. Behav. Neurosci. 117, 412–425 10.1037/0735-7044.117.3.412 PubMed DOI

Schroeder H., Humbert A. C., Desor D., Nehlig A. (1997). Long-term consequences of neonatal exposure to diazepam on cerebral glucose utilization, learning, memory and anxiety. Brain Res. 766, 142–152 10.1016/s0006-8993(97)00538-6 PubMed DOI

Sigling H. O., Wolterink-Donselaar I. G., Spruijt B. M. (2009). Home seeking behavior in rat pups: attachment vs. kin selection, oxytocin vs. vasopressin. Eur. J. Pharmacol. 612, 48–53 10.1016/j.ejphar.2009.03.070 PubMed DOI

Spear L. P. (1990). Neurobehavioral assessment during the early postnatal period. Neurotoxicol. Teratol. 12, 489–495 10.1016/0892-0362(90)90012-2 PubMed DOI

Stehouwer D. J., Campbell B. A. (1980). Ontogeny of passive avoidance: role of task demands and development of species-typical behaviors. Dev. Psychobiol. 13, 385–398 10.1002/dev.420130405 PubMed DOI

Thiel C. M., Muller C. P., Huston J. P., Schwarting R. K. (1999). High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93, 243–251 10.1016/s0306-4522(99)00158-x PubMed DOI

Tucker J. C. (1985). Benzodiazepines and the developing rat: a critical review. Neurosci. Biobehav. Rev. 9, 101–111 10.1016/0149-7634(85)90036-3 PubMed DOI

Vianna M. R., Izquierdo L. A., Barros D. M., Walz R., Medina J. H., Izquierdo I. (2000). Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades. An. Acad. Bras. Cienc. 72, 353–364 10.1590/s0001-37652000000300009 PubMed DOI

Wang L., Huang Z. (1990). Effect of clonazepam on brain development of mice. Dev. Pharmacol. Ther. 15, 21–25 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The outcome of early life status epilepticus-lessons from laboratory animals

. 2023 May ; 8 Suppl 1 (Suppl 1) : S90-S109. [epub] 20221109

The GluN2B-Selective Antagonist Ro 25-6981 Is Effective against PTZ-Induced Seizures and Safe for Further Development in Infantile Rats

. 2021 Sep 16 ; 13 (9) : . [epub] 20210916

Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors

. 2020 Apr 30 ; 21 (9) : . [epub] 20200430

Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors

. 2018 ; 11 () : 382. [epub] 20181011

Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives

. 2016 Feb 17 ; 36 (7) : 2161-75.

Cognitive deficits in schizophrenia and other neuropsychiatric disorders: convergence of preclinical and clinical evidence

. 2014 ; 8 () : 444. [epub] 20141223

Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior

. 2014 ; 8 () : 169. [epub] 20140508

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...