Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.CZ.02.1.01/0.0/0.0/16_025/0007444
European Regional Development Fund
19-11931S
Grantová Agentura České Republiky
67985823
support for long-term conceptual development of research organization RVO
SVV-260434/2019
Institutional Project of the Ministry of Education, Youth and Sport of the Czech Republic
PubMed
32366006
PubMed Central
PMC7246485
DOI
10.3390/ijms21093184
PII: ijms21093184
Knihovny.cz E-zdroje
- Klíčová slova
- GABAA/BZD receptor binding, GABAB receptor binding, clonazepam, neonatal rat, subunit mRNA expression,
- MeSH
- benzodiazepiny farmakologie MeSH
- GABA metabolismus MeSH
- hipokampus účinky léků metabolismus MeSH
- klonazepam farmakologie MeSH
- krysa rodu Rattus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mozek účinky léků metabolismus MeSH
- novorozená zvířata MeSH
- potkani inbrední WF MeSH
- receptory GABA-A metabolismus MeSH
- receptory GABA-B metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzodiazepiny MeSH
- GABA MeSH
- klonazepam MeSH
- receptory GABA-A MeSH
- receptory GABA-B MeSH
Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7-11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. In the hippocampus, the α4 subunit was downregulated after the 2-month interval. Changes in receptor binding were highly dependent on the receptor type, the interval after treatment cessation, and the brain structure. GABAA receptor binding was increased in almost all of the brain structures after the 48-h interval. BZD-binding was decreased in many brain structures involved in the neuronal networks associated with emotional behavior, anxiety, and cognitive functions after the 2-month interval. Binding of the GABAB receptors changed depending on the interval and brain structure. Overall, the described changes may affect both synaptic development and functioning and may potentially cause behavioral impairment.
Faculty of Science Charles University 12800 Prague Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic 14220 Prague Czech Republic
National Institute of Mental Health 25067 Klecany Czech Republic
Pharmacobiology Department Center of Research and Advanced Studies Mexico City 14330 Mexico
Zobrazit více v PubMed
Wu C., Sun D. GABA receptors in brain development, function, and injury. Metab. Brain Dis. 2015;30:367–379. doi: 10.1007/s11011-014-9560-1. PubMed DOI PMC
Fritschy J.M., Panzanelli P. GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur. J. Neurosci. 2014;39:1845–1865. doi: 10.1111/ejn.12534. PubMed DOI
Terunuma M. Diversity of structure and function of GABAB receptors: A complexity of GABAB-mediated signaling. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018;94:390–411. doi: 10.2183/pjab.94.026. PubMed DOI PMC
Fritschy J.M. Significance of GABA(A) receptor heterogeneity: Clues from developing neurons. Adv. Pharmacol. 2015;73:13–39. PubMed
Wang D.D., Kriegstein A.R. Defining the role of GABA in cortical development. J. Physiol. 2009:1873–1879. doi: 10.1113/jphysiol.2008.167635. PubMed DOI PMC
Rennie J.M., Boylan G.B. Neonatal seizures and their treatment. Curr. Opin. Neurol. 2003;16:177–181. doi: 10.1097/00019052-200304000-00010. PubMed DOI
Gai N., Grimm V.E. The effect of prenatal exposure to diazepam on aspects of postnatal development and behavior in rats. Psychopharmacology (Berl) 1982;78:225–229. doi: 10.1007/BF00428155. PubMed DOI
Tucker J.C. Benzodiazepines and the developing rat:a critical review. Neurosci. Biobehav. Rev. 1985;9:101–111. doi: 10.1016/0149-7634(85)90036-3. PubMed DOI
Kellogg C.K. Benzodiazepines: Influence on the developing brain. Prog. Brain Res. 1988;73:207–228. PubMed
Ikonomidoou C., Turski L. Antiepileptic drugs and brain development. Epilepsy Res. 2010;88:11–22. doi: 10.1016/j.eplepsyres.2009.09.019. PubMed DOI
Sundbakk L.M., Wood M., Gran J.M., Nordeng H. Impact of prenatal exposure to benzodiazepines and z-hypnotics on behavioral problems at 5 years of age: A study from the Norwegian Mother and Child Cohort Study. PLoS ONE. 2019;14:e0217830. doi: 10.1371/journal.pone.0217830. PubMed DOI PMC
Kubová H., Mareš P. Time course of the anticonvulsant action of clonazepam in the developing rats. Arch. Int. Pharmacodyn. 1989;298:15–24. PubMed
Kubová H., Mareš P., Vorlíček J. Stable anticonvulsant action of benzodiazepines during development in rats. J. Pharm. Pharmacol. 1993;45:807–810. doi: 10.1111/j.2042-7158.1993.tb05690.x. PubMed DOI
Mikulecká A., Mareš P., Kubová H. Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy Behav. 2011;20:12–19. doi: 10.1016/j.yebeh.2010.10.021. PubMed DOI
Mikulecká A., Šubrt M., Stuchlík A., Kubová H. Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front. Behav. Neurosci. 2014;8:101. doi: 10.3389/fnbeh.2014.00101. eCollection 2014. PubMed DOI PMC
Mikulecká A., Šubrt M., Pařízková M., Mareš P., Kubová H. Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Front. Behav. Neurosci. 2014;8:169. doi: 10.3389/fnbeh.2014.00169. eCollection 2014. PubMed DOI PMC
File S.E. Behavioral changes persisting in to adulthood after neonatal benzodiazepine administration in the rat. Neurobehav. Toxicol. Teratol. 1986;8:453–461. PubMed
File S.E. Effects of neonatal administration of diazepam and lorazepam on performance of adolescent rats in tests of anxiety, aggression, learning and convulsions. Neurobehav. Toxicol. Teratol. 1986;8:301–306. PubMed
File S.E. The effects of neonatal administration of clonazepam on passive avoidance and on social, aggressive and exploratory behavior of adolescent male rats. Neurobehav. Toxicol. Teratol. 1986;8:447–452. PubMed
File S.E. Diazepam and caffeine administration during the first week of life: Changes in neonatal and adolescent behavior. Neurotoxicol. Teratol. 1987;9:9–16. doi: 10.1016/0892-0362(87)90063-8. PubMed DOI
Kubová H., Mareš P. Partial agonist of benzodiazepine receptors Ro 19-8022 elicits withdrawal symptoms after short-term administration in immature rats. Physiol. Res. 2012;61:319–323. doi: 10.33549/physiolres.932343. PubMed DOI
Kubová H., Bendová Z., Moravcová S., Pačesová D., Rocha L., Mareš P. Neonatal clonazepam administration induced long-lasting changes in glutamate receptors. Front. Mol. Neurosci. 2018;11:382. doi: 10.3389/fnmol.2018.00382. PubMed DOI PMC
Whissell P.D., Rosenzweig S., Lecker I., Wang D.S., Wojtowicz J.M., Orser B.A. γ-aminobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Ann. Neurol. 2013;74:611–621. doi: 10.1002/ana.23941. PubMed DOI
Whissell P.D., Lecker I., Wang D.S., Yu J., Orser B.A. Altered expression of δGABAA receptors in health and disease. Neuropharmacology. 2015;88:24–35. doi: 10.1016/j.neuropharm.2014.08.003. PubMed DOI
Laurie D.J., Wisden W., Seeburg P.H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 1992;12:4151–4172. doi: 10.1523/JNEUROSCI.12-11-04151.1992. PubMed DOI PMC
Martini C., Rigacci T., Lucacchini A. [3H]muscimol binding site on purified benzodiazepine receptor. J. Neurochem. 1983;41:1183–1185. doi: 10.1111/j.1471-4159.1983.tb09070.x. PubMed DOI
Benkherouf A.Y., Taina K.R., Meera P., Aalto A.J., Li X.G., Soini S.L., Wallner M., Uusi-Oukari M.J. Extrasynaptic δ-GABAA receptors are high-affinity muscimol receptors. J. Neurochem. 2019;149:41–53. doi: 10.1111/jnc.14646. PubMed DOI PMC
Brett R.R., Pratt J.A. Changes in benzodiazepine-GABA receptor coupling in an accumbens-habenula circuit after chronic diazepam treatment. Br. J. Pharmacol. 1995;116:2375–2384. doi: 10.1111/j.1476-5381.1995.tb15083.x. PubMed DOI PMC
Andersen S.L., Navalta C.P. Altering the course of neurodevelopment: A framework for understanding the enduring effects of psychotropic drugs. Int. J. Dev. Neurosci. 2004;22:423–440. doi: 10.1016/j.ijdevneu.2004.06.002. PubMed DOI
Dobbing J., Smart J.L. Vulnerability of developing brain and behaviour. Br. Med. Bull. 1974;30:164–168. doi: 10.1093/oxfordjournals.bmb.a071188. PubMed DOI
Lohmann C., Kessels H.W. The developmental stages of synaptic plasticity. J. Physiol. 2014;592:13–31. doi: 10.1113/jphysiol.2012.235119. PubMed DOI PMC
Forcelli P.A., Janssen M.J., Vicini S., Gale K. Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development. Ann. Neurol. 2012;72:363–372. doi: 10.1002/ana.23600. PubMed DOI PMC
Uusi-Oukari M., Korpi E.R. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol. Rev. 2010;62:97–135. doi: 10.1124/pr.109.002063. PubMed DOI
Wu Y., Rosenberg H.C., Chiu T.H., Zhao T.J. Subunit- and brain region-specific reduction of GABAA receptor subunit mRNAs during chronic treatment of rats with diazepam. J. Mol. Neurosci. 1994;5:105–120. doi: 10.1007/BF02736752. PubMed DOI
Holt R.A., Bateson A.N., Martin I.L. Chronic treatment with diazepam or abecarnil differently affects the expression of GABAA receptor subunit mRNAs in the rat cortex. Neuropharmacology. 1996;35:1457–1463. doi: 10.1016/S0028-3908(96)00064-0. PubMed DOI
Tietz E.I., Huang X., Chen S., Ferencak W.F., 3rd Temporal and regional regulation of alpha1, beta2 and beta3, but not alpha2, alpha4, alpha5, alpha6, beta1 or gamma2 GABA(A) receptor subunit messenger RNAs following one-week oral flurazepam administration. Neuroscience. 1999;91:327–341. doi: 10.1016/S0306-4522(98)00516-8. PubMed DOI
Tietz E.I., Huang X., Weng X., Rosenberg H.C., Chiu T.H. Expression of alpha 1, alpha 5, and gamma 2 GABAA receptor subunit mRNAs measured in situ in rat hippocampus and cortex following chronic flurazepam administration. J. Mol. Neurosci. 1993;4:277–292. doi: 10.1007/BF02821559. PubMed DOI
Chen S., Huang X., Zeng X.J., Sieghart W., Tietz E.I. Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA(A) receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience. 1999;93:33–44. doi: 10.1016/S0306-4522(99)00118-9. PubMed DOI
Owens D.F., Kriegstein A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002;3:715–727. doi: 10.1038/nrn919. PubMed DOI
Sato T.N., Neale J.H. Type I and type II gamma-aminobutyric acid/benzodiazepine receptors: Purification and analysis of novel receptor complex from neonatal cortex. J. Neurochem. 1989;52:1114–1122. doi: 10.1111/j.1471-4159.1989.tb01855.x. PubMed DOI
Zhang J.H., Sato M., Tohyama M. Different postnatal development profiles of neurons containing distinct GABAA receptor beta subunit mRNAs (beta 1, beta 2, and beta 3) in the rat forebrain. J. Comp. Neurol. 1991;308:586–613. doi: 10.1002/cne.903080407. PubMed DOI
Zhang J.H., Sato M., Tohyama M. Different postnatal ontogenic profiles of neurons containing beta (beta 1, beta 2 and beta 3) subunit mRNAs of GABAA receptor in the rat thalamus. Brain Res. Dev. Brain Res. 1991;58:289–292. doi: 10.1016/0165-3806(91)90017-D. PubMed DOI
Zhang J.H., Sato M., Araki T., Tohyama M. Postnatal ontogenesis of neurons containing GABAA alpha 1 subunit mRNA in the rat forebrain. Brain Res. Mol. Brain Res. 1992;16:193–203. doi: 10.1016/0169-328X(92)90225-Z. PubMed DOI
Hornung J.P., Fritschy J.M. Developmental profile of GABAA-receptors in the marmoset monkey: Expression of distinct subtypes in pre- and postnatal brain. J. Comp. Neurol. 1996;367:413–430. doi: 10.1002/(SICI)1096-9861(19960408)367:3<413::AID-CNE7>3.0.CO;2-8. PubMed DOI
Stell B.M., Brickley S.G., Tang C.Y., Farrant M., Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc. Natl. Acad. Sci. USA. 2003;100:14439–14444. doi: 10.1073/pnas.2435457100. PubMed DOI PMC
Glykys J., Peng Z., Chandra D., Homanics G.E., Houser C.R., Mody I. A new naturally occurring GABA(A) receptor subunit partnership with high sensitivity to ethanol. Nat. Neurosci. 2007;10:40–48. doi: 10.1038/nn1813. PubMed DOI
Holter N.I., Zylla M.M., Zuber N., Bruehl C., Draguhn A. Tonic GABAergic control of mouse dentate granule cells during postnatal development. Eur. J. Neurosci. 2010;32:1300–1309. doi: 10.1111/j.1460-9568.2010.07331.x. PubMed DOI
Korpi E.R., Mihalek R.M., Sinkkonen S.T., Hauer B., Hevers W., Homanics G.E., Sieghart W., Lüddens H. Altered receptor subtypes in the forebrain of GABA(A) receptor delta subunit-deficient mice: Recruitment of gamma 2 subunits. Neuroscience. 2002;109:733–743. doi: 10.1016/S0306-4522(01)00527-9. PubMed DOI
Allison C., Pratt J.A. Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther. 2003;98:171–195. doi: 10.1016/S0163-7258(03)00029-9. PubMed DOI
Tietz E.I., Rosenberg H.C., Chiu T.H. Autoradiographic localization of benzodiazepine receptor downregulation. J. Pharmacol. Exp. Ther. 1986;236:284–292. PubMed
Percic D., Svob Strac D., Jazvincak Jemberek M., Vlainic J. Allosteric uncoupling and up-regulation of benzodiazepine and GABA recognition sites following chronic diazepam treatment of HEK 293 cells stably transfected with α1β2γ2S subunits of GABAA receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 2007;375:177–187. doi: 10.1007/s00210-007-0152-z. PubMed DOI
Fyhn M., Molden S., Witter M.P., Moser E.I., Moser M.B. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–1264. doi: 10.1126/science.1099901. PubMed DOI
White N.M. Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav. Brain Res. 2009;199:3–23. doi: 10.1016/j.bbr.2008.12.003. PubMed DOI
Panksepp J. The basic emotional circuits of mammalian brains: Do animals have affective lives? Neurosci. Biobehav. Rev. 2011;35:1791–1804. doi: 10.1016/j.neubiorev.2011.08.003. PubMed DOI
Benarroch E.E. Periaqueductal gray: An interface for behavioral control. Neurology. 2012;78:210–217. doi: 10.1212/WNL.0b013e31823fcdee. PubMed DOI
Fanselow M.S., Dong H.W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19. doi: 10.1016/j.neuron.2009.11.031. PubMed DOI PMC
Schroeder H., Humbert A.C., Desor D., Nehlig A. Long-term consequences of neonatal exposure to diazepam on cerebral glucose utilization, learning, memory and anxiety. Brain Res. 1997;766:142–152. doi: 10.1016/S0006-8993(97)00538-6. PubMed DOI
Chalifoux J.R., Carter A.G. GABAB receptor modulation of synaptic function. Curr. Opin. Neurobiol. 2011;21:339–344. doi: 10.1016/j.conb.2011.02.004. PubMed DOI PMC
Gaiarsa J.L., Porcher C. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Front. Cell Neurosci. 2013;7:206. doi: 10.3389/fncel.2013.00206. PubMed DOI PMC
Prosser H.M., Gill C.H., Hirst W.D., Grau E., Robbins M., Calver A., Soffin E.M., Farmer C.E., Lanneau C., Gray J., et al. Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol. Cell Neurosci. 2001;17:1059–1070. doi: 10.1006/mcne.2001.0995. PubMed DOI
Haller C., Casanova E., Müller M., Vacher C.M., Vigot R., Doll T., Barbieri S., Gassmann M., Bettler B. Floxed allele for conditional inactivation of the GABAB(1) gene. Genesis. 2004;40:125–130. doi: 10.1002/gene.20073. PubMed DOI
Bony G., Szczurkowska J., Tamagno I., Shelly M., Contestabile A., Cancedda L. Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat. Commun. 2013;4:1800. doi: 10.1038/ncomms2820. PubMed DOI
Heaney C.F., Kinney J.W. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. 2016;63:1–28. doi: 10.1016/j.neubiorev.2016.01.007. PubMed DOI
Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC
Benarroch E.E. GABAB receptors: Structure, functions, and clinical implications. Neurology. 2012;78:578–584. doi: 10.1212/WNL.0b013e318247cd03. PubMed DOI
Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., Dzietko M., Pesditschek S., Mai I., Dikranian K., et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA. 2002;99:15089–15094. doi: 10.1073/pnas.222550499. PubMed DOI PMC
Stefovska V.G., Uckeremann O., Czuczwar M., Smitka M., Czuczwar P., Kis J., Kaindl A.M., Turski L., Turski W.A., Ikonomidou C. Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann. Neurol. 2008;64:434–445. doi: 10.1002/ana.21463. PubMed DOI
Conklin P., Heggeness F.W. Maturation of temperature homeostasis in the rat. Am. J. Physiol. 1971;220:333–336. doi: 10.1152/ajplegacy.1971.220.2.333. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Rocha L., Alonso-Vanegas M., Martínez-Juárez I.E., Orozco-Suárez S., Escalante-Santiago D., Feria-Romero I.A., Zavala-Tecuapetla C., Cisneros-Franco J.M., Buentello-García R.M., Cienfuegos J. GABAergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: The potential impact of clinical factors. Front. Cell Neurosci. 2015;8:442. doi: 10.3389/fncel.2014.00442. PubMed DOI PMC