Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors

. 2018 ; 11 () : 382. [epub] 20181011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30364265

γ-aminobutyric acid (GABA) pathways play an important role in neuronal circuitry formation during early postnatal development. Our previous studies revealed an increased risk for adverse neurodevelopmental consequences in animals exposed to benzodiazepines, which enhance GABA inhibition via GABAA receptors. We reported that administration of the benzodiazepine clonazepam (CZP) during postnatal days 7-11 resulted in permanent behavioral alterations. However, the mechanisms underlying these changes are unknown. We hypothesized that early CZP exposure modifies development of glutamatergic receptors and their composition due to the tight developmental link between GABAergic functions and maturation of glutamatergic signaling. These changes may alter excitatory synapses, as well as neuronal connectivity and function of the neural network. We used quantitative real-time PCR and quantitative autoradiography to examine changes in NMDA and AMPA receptor composition and binding in response to CZP (1 mg/kg/day) administration for five consecutive days, beginning on P7. Brains were collected 48 h, 1 week, or 60 days after treatment cessation, and mRNA subunit expression was assessed in the hippocampus and sensorimotor cortex. A separate group of animals was used to determine binding to NMDA in different brain regions. Patterns of CZP-induced alterations in subunit mRNA expression were dependent on brain structure, interval after CZP cessation, and receptor subunit type. In the hippocampus, upregulation of GluN1, GluN3, and GluR2 subunit mRNA was observed at the 48-h interval, and GluN2A and GluR1 mRNA expression levels were higher 1 week after CZP cessation compared to controls, while GluN2B was downregulated. CZP exposure increased GluN3 and GluR2 subunit mRNA expression levels in the sensorimotor cortex 48 h after treatment cessation. GluA3 was higher 1 week after the CZP exposure, and GluN2A and GluA4 mRNA were significantly upregulated 2 months later. Expression of other subunits was not significantly different from that of the controls. NMDA receptor binding increased 1 week after the end of exposure in most hippocampal and cortical areas, including the sensorimotor cortex at the 48-h interval. CZP exposure decreased NMDA receptor binding in most evaluated hippocampal and cortical areas 2 months after the end of administration. Overall, early CZP exposure likely results in long-term glutamatergic receptor modulation that may affect synaptic development and function, potentially causing behavioral impairment.

Zobrazit více v PubMed

Allison C., Pratt J. A. (2003). Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther. 98 171–195. 10.1016/S0163-7258(03)00029-9 PubMed DOI

Alvarez V. A., Ridenour D. A., Sabatini B. L. (2007). Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J. Neurosci. 27 7365–7376. 10.1523/JNEUROSCI.0956-07.2007 PubMed DOI PMC

Andersen S. L., Navalta C. P. (2004). Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int. J. Dev. Neurosci. 22 423–440. 10.1016/j.ijdevneu.2004.06.002 PubMed DOI

Avishai-Eliner S., Brunson K. L., Sandman C. A., Baram T. Z. (2002). Stressed-out, or in (utero)? Trends Neurosci. 25 518–524. PubMed PMC

Ben-Ari Y., Cherubini E., Corradetti R., Gaiarsa J. L. (1989). Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. 416 303–325. 10.1113/jphysiol.1989.sp017762 PubMed DOI PMC

Ben-Ari Y., Khazipov R., Leinekugel X., Caillard O., Gaiarsa J. L. (1997). GABAA, NMDA and AMPA receptors: a developmentally regulated ’ménage à trois’. Trends Neurosci. 20 523–529. 10.1016/S0166-2236(97)01147-8 PubMed DOI

Benarroch E. E. (2012). Periaqueductal gray: an interface for behavioral control. Neurology 78 210–217. 10.1212/WNL.0b013e31823fcdee PubMed DOI

Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. U.S.A. 99 15089–15094. 10.1073/pnas.222550499 PubMed DOI PMC

Brill J., Huguenard J. R. (2008). Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit. J. Neurosci. 28 13918–13928. 10.1523/JNEUROSCI.3229-08.2008 PubMed DOI PMC

Cabañero D., Baker A., Zhou S., Hargett G. L., Irie T., Xia Y., et al. (2013). Pain after discontinuation of morphine treatment is associated with synaptic increase of GluA4-containing AMPAR in the dorsal horn of the spinal cord. Neuropsychopharmacology 38 1472–1484. 10.1038/npp.2013.46 PubMed DOI PMC

Chatterton J. E., Awobuluyi M., Premkumar L. S., Takahashi H., Talantova M., Shin Y., et al. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415 793–798. 10.1038/nature715 PubMed DOI

Chen G., Trombley P. Q., van den Pol A. N. (1996). Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. 494 451–464. 10.1113/jphysiol.1996.sp021505 PubMed DOI PMC

Chen J., Cai F., Cao J., Zhang X., Li S. (2009). Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J. Neurosci. Res. 87 2898–2907. 10.1002/jnr.22125 PubMed DOI

Conklin P., Heggeness F. W. (1971). Maturation of temperature homeostasis in the rat. Am. J. Physiol. 220 333–336. 10.1152/ajplegacy.1971.220.2.333 PubMed DOI

Cull-Candy S., Brickley S., Farrant M. (2001). NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11 327–335. 10.1016/S0959-4388(00)00215-4 PubMed DOI

Das S., Sasaki Y. F., Rothe T., Premkumar L. S., Takasu M., Crandall J. E., et al. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393 377–381. 10.1038/30748 PubMed DOI

Das P., Lilly S. M., Zerda R., Gunning W. T., III, Alvarez F. J., Tietz E. I. (2008). Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J. Comp. Neurol. 511 832–846. 10.1002/cne.21866 PubMed DOI PMC

Dobbing J., Smart J. L. (1974). Vulnerability of developing brain and behaviour. Br. Med. Bull. 30 164–168. 10.1093/oxfordjournals.bmb.a071188 PubMed DOI

Eybalin M., Caicedo A., Renard N., Ruel J., Puel J. L. (2004). Transient Ca2+–permeable AMPA receptors in postnatal rat primary auditory neurons. Eur. J. Neurosci. 20 2981–2989. 10.1111/j.1460-9568.2004.03772.x PubMed DOI

Fanselow M. S., Dong H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65 7–19. 10.1016/j.neuron.2009.11.031 PubMed DOI PMC

Farrell K. (1986). Benzodiazepines in the treatment of children with epilepsy. Epilepsia 27(Suppl. 1), S45–S52. 10.1111/j.1528-1157.1986.tb05733.x PubMed DOI

File S. E. (1986a). Behavioral changes persisting in to adulthood after neonatal benzodiazepine administration in the rat. Neurobehav. Toxicol. Teratol. 8 453–461. PubMed

File S. E. (1986b). Effects of neonatal administration of diazepam and lorazepam on performance of adolescent rats in tests of anxiety, aggression, learning and convulsions. Neurobehav. Toxicol. Teratol. 8 301–306. PubMed

File S. E. (1986c). The effects of neonatal administration of clonazepam on passive avoidance and on social, aggressive and exploratory behavior of adolescent male rats. Neurobehav. Toxicol. Teratol. 8 447–452. PubMed

File S. E. (1987). Diazepam and caffeine administration during the first week of life: changes in neonatal and adolescent behavior. Neurotoxicol. Teratol. 9 9–16. 10.1016/0892-0362(87)90063-8 PubMed DOI

Flint A. C., Maisch U. S., Weishaupt J. H., Kriegstein A. R., Monyer H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17 2469–2476. 10.1523/JNEUROSCI.17-07-02469.1997 PubMed DOI PMC

Forcelli P. A., Janssen M. J., Vicini S., Gale K. (2012). Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development. Ann. Neurol. 72 363–372. 10.1002/ana.23600 PubMed DOI PMC

Fyhn M., Molden S., Witter M. P., Moser E. I., Moser M. B. (2004). Spatial representation in the entorhinal cortex. Science 305 1258–1264. 10.1126/science.1099901 PubMed DOI

Gai N., Grimm V. E. (1982). The effect of prenatal exposure to diazepam on aspects of postnatal development and behavior in rats. Psychopharmacology 78 225–229. 10.1007/BF00428155 PubMed DOI

Geiger J. R., Lübke J., Roth A., Frotscher M., Jonas P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18 1009–1023. 10.1016/S0896-6273(00)80339-6 PubMed DOI

Groc L., Heine M., Cousins S. L., Stephenson F. A., Lounis B., Cognet L., et al. (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. U.S.A. 103 18769–18774. 10.1073/pnas.0605238103 PubMed DOI PMC

Henley J. M., Wilkinson K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17 337–350. 10.1038/nrn.2016.37 PubMed DOI

Herlenius E., Lagercrantz H. (2004). Development of neurotransmitter systems during critical periods. Exp. Neurol. 190(Suppl. 1), S8–S21. 10.1016/j.expneurol.2004.03.027 PubMed DOI

Hollmann M. (1999). “Structure of ionotropic glutamate receptors,” in Ionotropic Glutamate Receptors in the CNS, eds Jonas P., Monyer H. (Berlin: Springer; ), 1–98.

Hollmann M., Heinemann S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17 31–108. 10.1146/annurev.ne.17.030194.000335 PubMed DOI

Hu H., Gan J., Jonas P. (2014). Interneurons. Fast-spiking, parvalbumin? GABAergic interneurons: from cellular design to microcircuit function. Science 345:1255263. 10.1126/science.1255263 PubMed DOI

Ikonomidou C., Bittigau P., Koch C., Genz K., Hoerster F., Felderhoff-Mueser U., et al. (2001). Neurotransmitters and apoptosis in the developing brain. Biochem. Pharmacol. 62 401–405. 10.1016/S0006-2952(01)00696-7 PubMed DOI

Izzo E., Auta J., Impagnatiello F., Pesold C., Guidotti A., Costa E. (2001). Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines. Proc. Natl. Acad. Sci. U.S.A. 98 3483–3488. 10.1073/pnas.051628698 PubMed DOI PMC

Jevtovic-Todorovic V., Hartman R. E., Izumi Y., Benshoff N. D., Dikranian K., Zorumski C. F., et al. (2003). Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 23 876–882. 10.1523/JNEUROSCI.23-03-00876.2003 PubMed DOI PMC

Kehoe L. A., Bernardinelli Y., Muller D. (2013). GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013:145387. 10.1155/2013/145387 PubMed DOI PMC

Kellogg C. K. (1988). Benzodiazepines:influence on the developing brain. Prog. Brain Res. 73 207–228. 10.1016/S0079-6123(08)60506-3 PubMed DOI

Korpi E. R., den Hollander B., Farooq U., Vashchinkina E., Rajkumar R., Nutt D. J., et al. (2015). Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharmacol. Rev. 67 872–1004. 10.1124/pr.115.010967 PubMed DOI

Kubová H., Mareš P. (1989). Time course of the anticonvulsant action of clonazepam in the developing rats. Arch. Int. Pharmacodyn. Ther. 298 15–24. PubMed

Kubová H., Mareš P. (2012). Partial agonist of benzodiazepine receptors Ro 19-8022 elicits withdrawal symptoms after short-term administration in immature rats. Physiol. Res. 61 319–323. PubMed

Kubová H., Mareš P., Vorlíček J. (1993). Stable anticonvulsant action of benzodiazepines during development in rats. J. Pharm. Pharmacol. 45 807–810. 10.1111/j.2042-7158.1993.tb05690.x PubMed DOI

Kumar S. S., Bacci A., Kharazia V., Huguenard J. R. (2002). A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22 3005–3015. 10.1523/JNEUROSCI.22-08-03005.2002 PubMed DOI PMC

Lader M. (2014). Benzodiazepine harm: how can it be reduced? Br. J. Clin. Pharmacol. 77 295–301. 10.1111/j.1365-2125.2012.04418.x PubMed DOI PMC

Laurie D. J., Seeburg P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14 3180–3194. 10.1523/JNEUROSCI.14-05-03180.1994 PubMed DOI PMC

Lawrence J. J., Trussell L. O. (2000). Long-term specification of AMPA receptor properties after synapse formation. J. Neurosci. 20 4864–4870. 10.1523/JNEUROSCI.20-13-04864.2000 PubMed DOI PMC

Liu X. B., Murray K. D., Jones E. G. (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J. Neurosci. 24 8885–8895. 10.1523/JNEUROSCI.2476-04.2004 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lohmann C., Kessels H. W. (2014). The developmental stages of synaptic plasticity. J. Physiol. 592 13–31. 10.1113/jphysiol.2012.235119 PubMed DOI PMC

Michelini S., Cassano G. B., Frare F., Perugi G. (1996). Long-term use of benzodiazepines: tolerance, dependence and clinical problems in anxiety and mood disorders. Pharmacopsychiatry 29 127–134. 10.1055/s-2007-979558 PubMed DOI

Mikulecká A., Mareš P., Kubová H. (2011). Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy Behav. 20 12–19. 10.1016/j.yebeh.2010.10.021 PubMed DOI

Mikulecká A., Šubrt M., Stuchlík A., Kubová H. (2014a). Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front. Behav. Neurosci. 8:101. 10.3389/fnbeh.2014.00101 PubMed DOI PMC

Mikulecká A., Subrt M., Pařízková M., Mareš P., Kubová H. (2014b). Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Front. Behav. Neurosci. 8:169. 10.3389/fnbeh.2014.00169 PubMed DOI PMC

Miyamoto K., Nakanishi H., Moriguchi S., Fukuyama N., Eto K., Wakamiya J., et al. (2001). Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity. Brain Res. 901 252–258. 10.1016/S0006-8993(01)02281-8 PubMed DOI

Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12 529–540. 10.1016/0896-6273(94)90210-0 PubMed DOI

Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354 31–37. 10.1038/354031a0 PubMed DOI

Panksepp J. (2011). The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci. Biobehav. Rev. 35 1791–1804. 10.1016/j.neubiorev.2011.08.003 PubMed DOI

Paxinos G., Watson C. (1986). The Rat Brain in Stereotaxic Coordinates. New York, NY: Academic Press.

Pérez M. F., Salmirón R., Ramírez O. A. (2003). NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to Diazepam. Behav. Brain Res. 144 119–124. 10.1016/S0166-4328(03)00072-X PubMed DOI

Pérez-Otaño I., Larsen R. S., Wesseling J. F. (2016). Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17 623–635. 10.1038/nrn.2016.92 PubMed DOI

Rennie J. M., Boylan G. B. (2003). Neonatal seizures and their treatment. Curr. Opin. Neurol. 16 177–181. 10.1097/00019052-200304000-00010 PubMed DOI

Riva M. A., Tascedda F., Molteni R., Racagni G. (1994). Regulation of NMDA receptor subunit mRNA expression in the rat brain during postnatal development. Mol. Brain Res. 25 209–216. 10.1016/0169-328X(94)90155-4 PubMed DOI

Roberts A. C., Diez-Garcia J., Rodriguiz R. M., Lopez I. P., Lujan R., Martinez-Turrillas R., et al. (2009). Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63 342–356. 10.1016/j.neuron.2009.06.016 PubMed DOI PMC

Sakurai S. Y., Cha J. H., Penney J. B., Young A. B. (1991). Regional distribution and properties of [3H] MK-801 binding sites determined by quantitative autoradiography in rat brain. Neuroscience 40 533–543. 10.1016/0306-4522(91)90139-F PubMed DOI

Sans N., Petralia R. S., Wang Y. X., Blahos J., II, Hell J. W., Wenthold R. J. (2000). A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20 1260–1271. 10.1523/JNEUROSCI.20-03-01260.2000 PubMed DOI PMC

Schroeder H., Humbert A. C., Desor D., Nehlig A. (1997). Long-term consequences of neonatal exposure to diazepam on cerebral glucose utilization, learning, memory and anxiety. Brain Res. 766 142–152. 10.1016/S0006-8993(97)00538-6 PubMed DOI

Semple B. D., Blomgren K., Gimlin K., Ferriero D. M., Noble-Haeusslein L. J. (2013). Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106-107 1–16. 10.1016/j.pneurobio.2013.04.001 PubMed DOI PMC

Sommer B., Kohler M., Sprengel R., Seeburg P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67 11–19. 10.1016/0092-8674(91)90568-J PubMed DOI

Staley K. J., Mody I. (1992). Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol. 68 197–212. 10.1152/jn.1992.68.1.197 PubMed DOI

Talos D. M., Fishman R. E., Park H., Folkerth R. D., Follett P. L., Volpe J. J., et al. (2006). Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J. Comp. Neurol. 497 42–60. 10.1002/cne.20972 PubMed DOI PMC

Tebaldi T., Re A., Viero G., Pegoretti I., Passerini A., Blanzieri E., et al. (2012). Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 13:220. 10.1186/1471-2164-13-220 PubMed DOI PMC

Tobias J. D. (2000). Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit. Care Med. 28 2122–2132. 10.1097/00003246-200006000-00079 PubMed DOI

Tobias J. D. (2005). Sedation and analgesia in the pediatric intensive care unit. Pediatr. Ann. 34 636–645. 10.3928/0090-4481-20050801-12 PubMed DOI

Tsuda M., Shimizu N., Suzuki T. (1999). Contribution of glutamate receptors to benzodiazepine withdrawal signs. Jpn. J. Pharmacol. 81 1–6. 10.1254/jjp.81.1 PubMed DOI

Tsuda M., Suzuki T., Misawa M. (1998). Region-specific changes in [3H]dizocilpine binding in diazepam-withdrawn rats. Neurosci. Lett. 240 113–115. 10.1016/S0304-3940(97)00942-7 PubMed DOI

Tucker J. C. (1985). Benzodiazepines and the developing rat:a critical review. Neurosci. Biobehav. Rev. 9 101–111. 10.1016/0149-7634(85)90036-3 PubMed DOI

Uusi-Oukari M., Korpi E. R. (2010). Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol. Rev. 62 97–135. 10.1124/pr.109.002063 PubMed DOI

Van Sickle B. J., Xiang K., Tietz E. I. (2004). Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 29 1994–2006. 10.1038/sj.npp.1300531 PubMed DOI

Wang H., Yan H., Zhang S., Wei X., Zheng J., Li J. (2013). The GluN3A subunit exerts a neuroprotective effect in brain ischemia and the hypoxia process. ASN Neuro 5 231–242. 10.1042/AN20130009 PubMed DOI PMC

Watanabe M., Inoue Y., Sakimura K., Mishina M. (1992). Developmental changes in distribution of NMDA-receptor channel subunit mRNAs. Neuroreport 3 1138–1140. 10.1097/00001756-199212000-00027 PubMed DOI

Wenzel A., Fritschy J. M., Mohler H., Benke D. (1997). NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68 469–478. 10.1046/j.1471-4159.1997.68020469.x PubMed DOI

White N. M. (2009). Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav. Brain Res. 199 3–23. 10.1016/j.bbr.2008.12.003 PubMed DOI

Xiang K., Tietz E. I. (2007). Benzodiazepine-induced hippocampal CA1 neuron alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid receptors. Behav. Pharmacol. 18 447–460. 10.1097/FBP.0b013e3282d28f2b PubMed DOI

Yao Y., Mayer M. L. (2006). Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 26 4559–4566. 10.1523/JNEUROSCI.0560-06.2006 PubMed DOI PMC

Zhong J., Carrozza D. P., Williams K., Pritchett D. B., Molinoff P. B. (1995). Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J. Neurochem. 64 531–539. 10.1046/j.1471-4159.1995.64020531.x PubMed DOI

Zhu J. J., Esteban J. A., Hayashi Y., Malinow R. (2000). Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3 1098–1106. 10.1038/80614 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...