Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life

. 2020 Dec 07 ; 8 (12) : . [epub] 20201207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33297440

Grantová podpora
19-17037S Czech Science Foundation
CZ.CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund-Projects "PharmaBrain"

Odkazy

PubMed 33297440
PubMed Central PMC7762254
DOI 10.3390/biomedicines8120579
PII: biomedicines8120579
Knihovny.cz E-zdroje

The circadian clock regulates bodily rhythms by time cues that result from the integration of genetically encoded endogenous rhythms with external cycles, most potently with the light/dark cycle. Chronic exposure to constant light in adulthood disrupts circadian system function and can induce behavioral and physiological arrhythmicity with potential clinical consequences. Since the developing nervous system is particularly vulnerable to experiences during the critical period, we hypothesized that early-life circadian disruption would negatively impact the development of the circadian clock and its adult function. Newborn rats were subjected to a constant light of 16 lux from the day of birth through until postnatal day 20, and then they were housed in conditions of L12 h (16 lux): D12 h (darkness). The circadian period was measured by locomotor activity rhythm at postnatal day 60, and the rhythmic expressions of clock genes and tissue-specific genes were detected in the suprachiasmatic nuclei, retinas, and pineal glands at postnatal days 30 and 90. Our data show that early postnatal exposure to constant light leads to a prolonged endogenous period of locomotor activity rhythm and affects the rhythmic gene expression in all studied brain structures later in life.

Zobrazit více v PubMed

Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821. PubMed DOI

Takahashi J.S. Molecular Architecture of the Circadian Clock in Mammals. In: Sassone-Corsi P., Christen Y., editors. A Time for Metabolism and Hormones. Springer; Cham, Switzerland: 2016. PubMed

Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–1070. doi: 10.1126/science.1069609. PubMed DOI PMC

Hughes S., Jagannath A., Hankins M.W., Foster R.G., Peirson S.N. Photic regulation of clock systems. Methods Enzymol. 2015;552:125–143. doi: 10.1016/bs.mie.2014.10.018. PubMed DOI

Nieto P.S., Valdez D.J., Acosta-Rodriguez V.A., Guido M.E. Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina. PLoS ONE. 2011;6:e26417. doi: 10.1371/journal.pone.0026417. PubMed DOI PMC

Hughes S., Rodgers J., Hickey D., Foster R.G., Peirson S.N., Hankins M.W. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci. Rep. 2016;6:28086. doi: 10.1038/srep28086. PubMed DOI PMC

Klein D.C., Moore R.Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 1979;174:245–262. doi: 10.1016/0006-8993(79)90848-5. PubMed DOI

Stehle J.H., Foulkes N.S., Molina C.A., Simonneaux V., Pevet P., Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional re-pressor CREM in the pineal gland. Nature. 1993;365:314–3204. doi: 10.1038/365314a0. PubMed DOI

Foulkes N.S., Borjigin J., Snyder S.H., Sassone-Corsi P. Transcriptionalcontrol of circadian hormone synthesis via the CREM feedback loop. Proc. Natl. Acad. Sci. USA. 1996;93:14140–141455. doi: 10.1073/pnas.93.24.14140. PubMed DOI PMC

Maronde E., Pfeffer M., Olcese J., Molina C.A., Schlotter F., Dehghani F., Korf H.W., Stehle J.H. Transcription factors in neuroendocrine regulation: Rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J. Neurosci. 1999;19:3326–3336. doi: 10.1523/JNEUROSCI.19-09-03326.1999. PubMed DOI PMC

Ho A.K., Terriff D.L., Price D.M., Wloka M.T., Chik C.L. The Role of Inducible Repressor Proteins in the Adrenergic Induction of Arylalkylamine-N-Acetyltransferase and Mitogen-Activated Protein Kinase Phosphatase-1 in Rat Pinealocytes. Endocrinology. 2007;148:743–751. doi: 10.1210/en.2006-1154. PubMed DOI

Martinez-Nicolas A., Juan A.M., Rol M.A. Day–night contrast as source of health for the human circadian system. Chronobiol. Int. 2014;31:382–393. doi: 10.3109/07420528.2013.861845. PubMed DOI

Patterson S.S., Kuchenbecker J.A., Anderson J.R., Neitz M., Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr. Biol. 2020;30:1269–1274. doi: 10.1016/j.cub.2020.01.040. PubMed DOI PMC

Ohta H., Yamazaki S., McMahon D.G. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 2005;8:267–926. doi: 10.1038/nn1395. PubMed DOI

Coomans C.P., van den Berg S.A., Houben T., van Klinken J.B., van den Berg R., Pronk A.C., Havekes L.M., Romijn J.A., van Dijk K.W., Biermasz N.R., et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013;27:1721–1732. doi: 10.1096/fj.12-210898. PubMed DOI

Molcan L., Sutovska H., Okuliarova M., Senko T., Krskova L., Zeman M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019;231:116568. doi: 10.1016/j.lfs.2019.116568. PubMed DOI

Rumanova V.S., Okuliarova M., Zeman M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020;21:5478. doi: 10.3390/ijms21155478. PubMed DOI PMC

Ono D., Honma S., Honma K. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark. PLoS ONE. 2013;8:e80615. doi: 10.1371/journal.pone.0080615. PubMed DOI PMC

Sulli G., Manoogian E.N.C., Taub P.R., Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol. Sci. 2018;39:812–827. doi: 10.1016/j.tips.2018.07.003. PubMed DOI PMC

Sládek M., Sumová A., Kováčiková Z., Bendová Z., Laurinová K., Illnerová H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA. 2004;101:6231–6236. doi: 10.1073/pnas.0401149101. PubMed DOI PMC

Carmona-Alcocer V., Abel J.H., Sun T.C., Petzold L.R., Doyle F.J., 3rd, Simms C.L., Herzog E.D. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus. J. Neurosci. 2018;38:1326–1334. doi: 10.1523/JNEUROSCI.2006-17.2017. PubMed DOI PMC

Bendová Z., Sumová A., Illnerová H. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Brain Res. Dev. Brain Res. 2004;148:105–112. doi: 10.1016/j.devbrainres.2003.10.007. PubMed DOI

Kováčiková Z., Sládek M., Bendová Z., Illnerová H., Sumová A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. J. Biol. Rhythms. 2006;21:140–148. doi: 10.1177/0748730405285876. PubMed DOI

Hahnová K., Pačesová D., Volfová B., Červená K., Kašparová D., Žurmanová J., Bendová Z. Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiol. Int. 2016;33:141–150. doi: 10.3109/07420528.2015.1120741. PubMed DOI

Canal-Corretger M.M., Cambras T., Vilaplana J., Díez-Noguera A. Bright light during lactation alters the functioning of the circadian system of adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278:R201–R208. doi: 10.1152/ajpregu.2000.278.1.R201. PubMed DOI

Canal-Corretger M.M., Vilaplana J., Cambras T., Díez-Noguera A. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;280:R1023–R1030. doi: 10.1152/ajpregu.2001.280.4.R1023. PubMed DOI

Brooks E., Canal M.M. Development of circadian rhythms: Role of postnatal light environment. Neurosci. Biobehav. Rev. 2013;37:551–560. doi: 10.1016/j.neubiorev.2013.02.012. PubMed DOI

Canal-Corretger M.M., Cambras T., Díez-Noguera A. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chronobiol. Int. 2003;20:21–35. doi: 10.1081/CBI-120017690. PubMed DOI

Brooks E., Patel D., Canal M.M. Programming of mice circadian photic responses by postnatal light environment. PLoS ONE. 2014;9:e97160. doi: 10.1371/journal.pone.0097160. PubMed DOI PMC

Madahi P.G., Ivan O., Adriana B., Diana O., Carolina E. Constant light during lactation programs circadian and metabolic systems. Chronobiol. Int. 2018;35:1153–1167. doi: 10.1080/07420528.2018.1465070. PubMed DOI

Cambras T., López L., Arias J.L., Díez-Noguera A. Quantitative changes in neuronal and glial cells in the suprachiasmatic nucleus as a function of the lighting conditions during weaning. Brain Res. Dev. Brain Res. 2005;157:27–33. doi: 10.1016/j.devbrainres.2005.02.014. PubMed DOI

Canal M.M., Mohammed N.M., Rodríguez J.J. Early programming of astrocyte organization in the mouse suprachiasmatic nuclei by light. Chronobiol. Int. 2009;26:1545–1558. doi: 10.3109/07420520903398542. PubMed DOI

Brooks E., Waters E., Farrington L., Canal M.M. Differential hypothalamic tyrosine hydroxylase distribution and activation by light in adult mice reared under different light conditions during the suckling period. Brain Struct. Funct. 2011;216:357–370. doi: 10.1007/s00429-011-0318-9. PubMed DOI

Vilches N., Spichiger C., Mendez N., Abarzua-Catalan L., Galdames H.A., Hazlerigg D.G., Richter H.G., Torres-Farfan C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS ONE. 2014;9:e91313. doi: 10.1371/journal.pone.0091313. PubMed DOI PMC

Coleman G., Gigg J., Canal M.M. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice. Eur. J. Neurosci. 2016;44:2807–2817. doi: 10.1111/ejn.13388. PubMed DOI

Noell W.K., Walker V.S., Kang B.S., Berman S. Retinal damage by light in rats. Investig. Ophthalmol. 1966;5:450–473. PubMed

Luik A.I., Zuurbier L.A., Hofman A., Van Someren E.J., Tiemeier H. Stability and fragmentation of the activity rhythm across the sleep-wake cycle: The importance of age, lifestyle, and mental health. Chronobiol. Int. 2013;30:1223–1230. doi: 10.3109/07420528.2013.813528. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Deprés-Brummer P., Lévi F., Metzger G., Touitou Y. Light-induced suppression of the rat circadian system. Am. J. Physiol. 1995;268 Pt 2:R1111–R1116. doi: 10.1152/ajpregu.1995.268.5.R1111. PubMed DOI

Honma S., Kanematsu N., Katsuno Y., Honma K. Persistence of circadian oscillation while locomotor activity and plasma melatonin levels became aperiodic under prolonged continuous light in the rat. Neurosci. Lett. 1996;216:49–52. doi: 10.1016/0304-3940(96)13006-8. PubMed DOI

Wideman C.H., Murphy H.M. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr. Neurosci. 2009;12:233–240. doi: 10.1179/147683009X423436. PubMed DOI

Diatroptov M.E., Diatroptova M.A., Kosyreva A.M., Dzhalilova D.S., Mkhitarov V.A., Mikhailova L.P., Makarova O.V. Ultradian Rhythms of Body Temperatures in Male Wistar Rats Maintained under Conditions of Constant Illumination. Bull. Exp. Biol. Med. 2019;167:735–739. doi: 10.1007/s10517-019-04611-z. PubMed DOI

Qian J., Block G.D., Colwell C.S., Matveyenko A.V. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes. 2013;62:3469–3478. doi: 10.2337/db12-1543. PubMed DOI PMC

Guerrero-Vargas N.N., Navarro-Espíndola R., Guzmán-Ruíz M.A., Basualdo M.D.C., Espitia-Bautista E., López-Bago A., Lascurain R., Córdoba-Manilla C., Buijs R.M., Escobar C. Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer. 2017;17:625. doi: 10.1186/s12885-017-3636-3. PubMed DOI PMC

Tapia-Osorio A., Salgado-Delgado R., Angeles-Castellanos M., Escobar C. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav. Brain Res. 2013;252:1–9. doi: 10.1016/j.bbr.2013.05.028. PubMed DOI

Cambras T., Canal M.M., Torres A., Vilaplana J., Díez-Noguera A. Manifestation of circadian rhythm under constant light depends on lighting conditions during lactation. Am. J. Physiol. 1997;272 Pt 2:R1039–R1046. doi: 10.1152/ajpregu.1997.272.4.R1039. PubMed DOI

Canal-Corretger M.M., Vilaplana J., Cambras T., Díez-Noguera A. Effect of light on the development of the circadian rhythm of motor activity in the mouse. Chronobiol. Int. 2001;18:683–696. doi: 10.1081/CBI-100106081. PubMed DOI

Aschoff J. Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrift fur Tierpsychologie. 1979;49:225–249. doi: 10.1111/j.1439-0310.1979.tb00290.x. PubMed DOI

Cambras T., Vilaplana J., Torres A., Canal M.M., Casamitjana N., Campuzano A., Díez-Noguera A. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL. Physiol. Behav. 1998;63:875–882. doi: 10.1016/S0031-9384(98)00006-7. PubMed DOI

Bendová Z., Sumová A., Mikkelsen J.D. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience. 2009;159:599–609. doi: 10.1016/j.neuroscience.2009.01.016. PubMed DOI

Bendová Z., Sládek M., Svobodová I. The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochem. Int. 2012;61:43–47. doi: 10.1016/j.neuint.2012.04.016. PubMed DOI

Wang L.M., Schroeder A., Loh D., Smith D., Lin K., Han J.H., Michel S., Hummer D.L., Ehlen J.C., Albers H.E., et al. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. Eur. J. Neurosci. 2008;27:1771–1779. doi: 10.1111/j.1460-9568.2008.06144.x. PubMed DOI PMC

Kubová H., Bendová Z., Moravcová S., Pačesová D., Rocha L.L., Mareš P. Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors. Front. Mol. Neurosci. 2018;11:382. doi: 10.3389/fnmol.2018.00382. PubMed DOI PMC

Honma S., Katsuno Y., Shinohara K., Abe H., Honma K. Circadian rhythm and response to light of extracellular glutamate and aspartate in rat suprachiasmatic nucleus. Am. J. Physiol. 1996;271 Pt 2:R579–R585. doi: 10.1152/ajpregu.1996.271.3.R579. PubMed DOI

Tosini G., Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996;272:419–421. doi: 10.1126/science.272.5260.419. PubMed DOI

Ruan G.X., Zhang D.Q., Zhou T., Yamazaki S., McMahon D.G. Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. USA. 2006;103:9703–9708. doi: 10.1073/pnas.0601940103. PubMed DOI PMC

Tosini G., Davidson A.J., Fukuhara C., Kasamatsu M., Castanon-Cervantes O. Localization of a circadian clock in mammalian photoreceptors. FASEB J. 2007;21:3866–3871. doi: 10.1096/fj.07-8371com. PubMed DOI PMC

Jaeger C., Sandu C., Malan A., Mellac K., Hicks D., Felder-Schmittbuhl M.P. Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators. FASEB J. 2015;29:1493–1504. doi: 10.1096/fj.14-261214. PubMed DOI

Kamphuis W., Cailotto C., Dijk F., Bergen A., Buijs R.M. Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem. Biophys. Res. Commun. 2005;330:18–26. doi: 10.1016/j.bbrc.2005.02.118. PubMed DOI

González-Menéndez I., Contreras F., Cernuda-Cernuda R., García-Fernández J.M. Daily rhythm of melanopsin-expressing cells in the mouse retina. Front. Cell Neurosci. 2009;3:3. doi: 10.3389/neuro.03.003.2009. PubMed DOI PMC

González-Menéndez I., Contreras F., Cernuda-Cernuda R., García-Fernández J.M. No loss of melanopsin-expressing ganglion cells detected during postnatal development of the mouse retina. Histol. Histopathol. 2010;25:73–82. doi: 10.14670/HH-25.73. PubMed DOI

Sakamoto K., Liu C., Tosini G. Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J. Neurosci. 2004;24:9693–9697. doi: 10.1523/JNEUROSCI.2556-04.2004. PubMed DOI PMC

Hannibal J., Georg B., Fahrenkrug J. Differential expression of melanopsin mRNA and protein in Brown Norwegian rats. Exp. Eye Res. 2013;106:55–63. doi: 10.1016/j.exer.2012.11.006. PubMed DOI

Nieto P.S., Acosta-Rodriguez V.A., Valdez D.J., Guido M.E. Differential responses of the mammalian retinal ganglion cell line RGC-5 to physiological stimuli and trophic factors. Neurochem. Int. 2010;57:216–226. doi: 10.1016/j.neuint.2010.05.013. PubMed DOI

Benedetto M.M., Guido M.E., Contin M.A. Non-Visual Photopigments Effects of Constant Light-Emitting Diode Light Exposure on the Inner Retina of Wistar Rats. Front. Neurol. 2017;8:417. doi: 10.3389/fneur.2017.00417. PubMed DOI PMC

Peichl L. Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005;287:1001–1012. doi: 10.1002/ar.a.20262. PubMed DOI

Gastel J.A., Roseboom P.H., Rinaldi P.A., Weller J.L., Klein D.C. Melatonin production: Proteasomal proteolysisin serotoninN-acetyltransferase regulation. Science. 1998;279:1358–1360. doi: 10.1126/science.279.5355.1358. PubMed DOI

Fukuhara C., Dirden J.C., Tosini G. Circadian expression of period 1, period 2, and arylalkylamine N-acetyltransferase mRNA in the rat pineal gland under different light conditions. Neurosci. Lett. 2000;286:167–170. doi: 10.1016/S0304-3940(00)01129-0. PubMed DOI

Simonneaux V., Poirel V.J., Garidou M.L., Nguyen D., Diaz-Rodriguez E., Pévet P. Daily rhythm and regulation of clock gene expression in the rat pineal gland. Brain Res. Mol. Brain Res. 2004;120:164–172. doi: 10.1016/j.molbrainres.2003.10.019. PubMed DOI

Karolczak M., Burbach G.J., Sties G., Korf H.W., Stehle J.H. Clock gene mRNA and protein rhythms in the pineal gland of mice. Eur. J. Neurosci. 2004;19:3382–3388. doi: 10.1111/j.0953-816X.2004.03444.x. PubMed DOI

Wongchitrat P., Felder-Schmittbuhl M.P., Phansuwan-Pujito P., Pévet P., Simonneaux V. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine. Eur. J. Neurosci. 2009;29:2009–2016. doi: 10.1111/j.1460-9568.2009.06742.x. PubMed DOI

Simonneaux V., Ribelayga C. Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 2003;55:325–395. doi: 10.1124/pr.55.2.2. PubMed DOI

Bellavía S.L., Gallará R.V. Modification of the beta- and alpha2-adrenergic sensitivity of rat submandibular glands by environmental stimuli and stress. Arch. Oral Biol. 1998;43:933–939. doi: 10.1016/S0003-9969(98)00084-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...