Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17037S
Czech Science Foundation
CZ.CZ.02.1.01/0.0/0.0/16_025/0007444
European Regional Development Fund-Projects "PharmaBrain"
PubMed
33297440
PubMed Central
PMC7762254
DOI
10.3390/biomedicines8120579
PII: biomedicines8120579
Knihovny.cz E-zdroje
- Klíčová slova
- circadian clock, light at night, pineal gland, rat, retina, suprachiasmatic nucleus,
- Publikační typ
- časopisecké články MeSH
The circadian clock regulates bodily rhythms by time cues that result from the integration of genetically encoded endogenous rhythms with external cycles, most potently with the light/dark cycle. Chronic exposure to constant light in adulthood disrupts circadian system function and can induce behavioral and physiological arrhythmicity with potential clinical consequences. Since the developing nervous system is particularly vulnerable to experiences during the critical period, we hypothesized that early-life circadian disruption would negatively impact the development of the circadian clock and its adult function. Newborn rats were subjected to a constant light of 16 lux from the day of birth through until postnatal day 20, and then they were housed in conditions of L12 h (16 lux): D12 h (darkness). The circadian period was measured by locomotor activity rhythm at postnatal day 60, and the rhythmic expressions of clock genes and tissue-specific genes were detected in the suprachiasmatic nuclei, retinas, and pineal glands at postnatal days 30 and 90. Our data show that early postnatal exposure to constant light leads to a prolonged endogenous period of locomotor activity rhythm and affects the rhythmic gene expression in all studied brain structures later in life.
Zobrazit více v PubMed
Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821. PubMed DOI
Takahashi J.S. Molecular Architecture of the Circadian Clock in Mammals. In: Sassone-Corsi P., Christen Y., editors. A Time for Metabolism and Hormones. Springer; Cham, Switzerland: 2016. PubMed
Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–1070. doi: 10.1126/science.1069609. PubMed DOI PMC
Hughes S., Jagannath A., Hankins M.W., Foster R.G., Peirson S.N. Photic regulation of clock systems. Methods Enzymol. 2015;552:125–143. doi: 10.1016/bs.mie.2014.10.018. PubMed DOI
Nieto P.S., Valdez D.J., Acosta-Rodriguez V.A., Guido M.E. Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina. PLoS ONE. 2011;6:e26417. doi: 10.1371/journal.pone.0026417. PubMed DOI PMC
Hughes S., Rodgers J., Hickey D., Foster R.G., Peirson S.N., Hankins M.W. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci. Rep. 2016;6:28086. doi: 10.1038/srep28086. PubMed DOI PMC
Klein D.C., Moore R.Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 1979;174:245–262. doi: 10.1016/0006-8993(79)90848-5. PubMed DOI
Stehle J.H., Foulkes N.S., Molina C.A., Simonneaux V., Pevet P., Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional re-pressor CREM in the pineal gland. Nature. 1993;365:314–3204. doi: 10.1038/365314a0. PubMed DOI
Foulkes N.S., Borjigin J., Snyder S.H., Sassone-Corsi P. Transcriptionalcontrol of circadian hormone synthesis via the CREM feedback loop. Proc. Natl. Acad. Sci. USA. 1996;93:14140–141455. doi: 10.1073/pnas.93.24.14140. PubMed DOI PMC
Maronde E., Pfeffer M., Olcese J., Molina C.A., Schlotter F., Dehghani F., Korf H.W., Stehle J.H. Transcription factors in neuroendocrine regulation: Rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J. Neurosci. 1999;19:3326–3336. doi: 10.1523/JNEUROSCI.19-09-03326.1999. PubMed DOI PMC
Ho A.K., Terriff D.L., Price D.M., Wloka M.T., Chik C.L. The Role of Inducible Repressor Proteins in the Adrenergic Induction of Arylalkylamine-N-Acetyltransferase and Mitogen-Activated Protein Kinase Phosphatase-1 in Rat Pinealocytes. Endocrinology. 2007;148:743–751. doi: 10.1210/en.2006-1154. PubMed DOI
Martinez-Nicolas A., Juan A.M., Rol M.A. Day–night contrast as source of health for the human circadian system. Chronobiol. Int. 2014;31:382–393. doi: 10.3109/07420528.2013.861845. PubMed DOI
Patterson S.S., Kuchenbecker J.A., Anderson J.R., Neitz M., Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr. Biol. 2020;30:1269–1274. doi: 10.1016/j.cub.2020.01.040. PubMed DOI PMC
Ohta H., Yamazaki S., McMahon D.G. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 2005;8:267–926. doi: 10.1038/nn1395. PubMed DOI
Coomans C.P., van den Berg S.A., Houben T., van Klinken J.B., van den Berg R., Pronk A.C., Havekes L.M., Romijn J.A., van Dijk K.W., Biermasz N.R., et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013;27:1721–1732. doi: 10.1096/fj.12-210898. PubMed DOI
Molcan L., Sutovska H., Okuliarova M., Senko T., Krskova L., Zeman M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019;231:116568. doi: 10.1016/j.lfs.2019.116568. PubMed DOI
Rumanova V.S., Okuliarova M., Zeman M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020;21:5478. doi: 10.3390/ijms21155478. PubMed DOI PMC
Ono D., Honma S., Honma K. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark. PLoS ONE. 2013;8:e80615. doi: 10.1371/journal.pone.0080615. PubMed DOI PMC
Sulli G., Manoogian E.N.C., Taub P.R., Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol. Sci. 2018;39:812–827. doi: 10.1016/j.tips.2018.07.003. PubMed DOI PMC
Sládek M., Sumová A., Kováčiková Z., Bendová Z., Laurinová K., Illnerová H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA. 2004;101:6231–6236. doi: 10.1073/pnas.0401149101. PubMed DOI PMC
Carmona-Alcocer V., Abel J.H., Sun T.C., Petzold L.R., Doyle F.J., 3rd, Simms C.L., Herzog E.D. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus. J. Neurosci. 2018;38:1326–1334. doi: 10.1523/JNEUROSCI.2006-17.2017. PubMed DOI PMC
Bendová Z., Sumová A., Illnerová H. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Brain Res. Dev. Brain Res. 2004;148:105–112. doi: 10.1016/j.devbrainres.2003.10.007. PubMed DOI
Kováčiková Z., Sládek M., Bendová Z., Illnerová H., Sumová A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. J. Biol. Rhythms. 2006;21:140–148. doi: 10.1177/0748730405285876. PubMed DOI
Hahnová K., Pačesová D., Volfová B., Červená K., Kašparová D., Žurmanová J., Bendová Z. Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiol. Int. 2016;33:141–150. doi: 10.3109/07420528.2015.1120741. PubMed DOI
Canal-Corretger M.M., Cambras T., Vilaplana J., Díez-Noguera A. Bright light during lactation alters the functioning of the circadian system of adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278:R201–R208. doi: 10.1152/ajpregu.2000.278.1.R201. PubMed DOI
Canal-Corretger M.M., Vilaplana J., Cambras T., Díez-Noguera A. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;280:R1023–R1030. doi: 10.1152/ajpregu.2001.280.4.R1023. PubMed DOI
Brooks E., Canal M.M. Development of circadian rhythms: Role of postnatal light environment. Neurosci. Biobehav. Rev. 2013;37:551–560. doi: 10.1016/j.neubiorev.2013.02.012. PubMed DOI
Canal-Corretger M.M., Cambras T., Díez-Noguera A. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chronobiol. Int. 2003;20:21–35. doi: 10.1081/CBI-120017690. PubMed DOI
Brooks E., Patel D., Canal M.M. Programming of mice circadian photic responses by postnatal light environment. PLoS ONE. 2014;9:e97160. doi: 10.1371/journal.pone.0097160. PubMed DOI PMC
Madahi P.G., Ivan O., Adriana B., Diana O., Carolina E. Constant light during lactation programs circadian and metabolic systems. Chronobiol. Int. 2018;35:1153–1167. doi: 10.1080/07420528.2018.1465070. PubMed DOI
Cambras T., López L., Arias J.L., Díez-Noguera A. Quantitative changes in neuronal and glial cells in the suprachiasmatic nucleus as a function of the lighting conditions during weaning. Brain Res. Dev. Brain Res. 2005;157:27–33. doi: 10.1016/j.devbrainres.2005.02.014. PubMed DOI
Canal M.M., Mohammed N.M., Rodríguez J.J. Early programming of astrocyte organization in the mouse suprachiasmatic nuclei by light. Chronobiol. Int. 2009;26:1545–1558. doi: 10.3109/07420520903398542. PubMed DOI
Brooks E., Waters E., Farrington L., Canal M.M. Differential hypothalamic tyrosine hydroxylase distribution and activation by light in adult mice reared under different light conditions during the suckling period. Brain Struct. Funct. 2011;216:357–370. doi: 10.1007/s00429-011-0318-9. PubMed DOI
Vilches N., Spichiger C., Mendez N., Abarzua-Catalan L., Galdames H.A., Hazlerigg D.G., Richter H.G., Torres-Farfan C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS ONE. 2014;9:e91313. doi: 10.1371/journal.pone.0091313. PubMed DOI PMC
Coleman G., Gigg J., Canal M.M. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice. Eur. J. Neurosci. 2016;44:2807–2817. doi: 10.1111/ejn.13388. PubMed DOI
Noell W.K., Walker V.S., Kang B.S., Berman S. Retinal damage by light in rats. Investig. Ophthalmol. 1966;5:450–473. PubMed
Luik A.I., Zuurbier L.A., Hofman A., Van Someren E.J., Tiemeier H. Stability and fragmentation of the activity rhythm across the sleep-wake cycle: The importance of age, lifestyle, and mental health. Chronobiol. Int. 2013;30:1223–1230. doi: 10.3109/07420528.2013.813528. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Deprés-Brummer P., Lévi F., Metzger G., Touitou Y. Light-induced suppression of the rat circadian system. Am. J. Physiol. 1995;268 Pt 2:R1111–R1116. doi: 10.1152/ajpregu.1995.268.5.R1111. PubMed DOI
Honma S., Kanematsu N., Katsuno Y., Honma K. Persistence of circadian oscillation while locomotor activity and plasma melatonin levels became aperiodic under prolonged continuous light in the rat. Neurosci. Lett. 1996;216:49–52. doi: 10.1016/0304-3940(96)13006-8. PubMed DOI
Wideman C.H., Murphy H.M. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr. Neurosci. 2009;12:233–240. doi: 10.1179/147683009X423436. PubMed DOI
Diatroptov M.E., Diatroptova M.A., Kosyreva A.M., Dzhalilova D.S., Mkhitarov V.A., Mikhailova L.P., Makarova O.V. Ultradian Rhythms of Body Temperatures in Male Wistar Rats Maintained under Conditions of Constant Illumination. Bull. Exp. Biol. Med. 2019;167:735–739. doi: 10.1007/s10517-019-04611-z. PubMed DOI
Qian J., Block G.D., Colwell C.S., Matveyenko A.V. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes. 2013;62:3469–3478. doi: 10.2337/db12-1543. PubMed DOI PMC
Guerrero-Vargas N.N., Navarro-Espíndola R., Guzmán-Ruíz M.A., Basualdo M.D.C., Espitia-Bautista E., López-Bago A., Lascurain R., Córdoba-Manilla C., Buijs R.M., Escobar C. Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer. 2017;17:625. doi: 10.1186/s12885-017-3636-3. PubMed DOI PMC
Tapia-Osorio A., Salgado-Delgado R., Angeles-Castellanos M., Escobar C. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav. Brain Res. 2013;252:1–9. doi: 10.1016/j.bbr.2013.05.028. PubMed DOI
Cambras T., Canal M.M., Torres A., Vilaplana J., Díez-Noguera A. Manifestation of circadian rhythm under constant light depends on lighting conditions during lactation. Am. J. Physiol. 1997;272 Pt 2:R1039–R1046. doi: 10.1152/ajpregu.1997.272.4.R1039. PubMed DOI
Canal-Corretger M.M., Vilaplana J., Cambras T., Díez-Noguera A. Effect of light on the development of the circadian rhythm of motor activity in the mouse. Chronobiol. Int. 2001;18:683–696. doi: 10.1081/CBI-100106081. PubMed DOI
Aschoff J. Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrift fur Tierpsychologie. 1979;49:225–249. doi: 10.1111/j.1439-0310.1979.tb00290.x. PubMed DOI
Cambras T., Vilaplana J., Torres A., Canal M.M., Casamitjana N., Campuzano A., Díez-Noguera A. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL. Physiol. Behav. 1998;63:875–882. doi: 10.1016/S0031-9384(98)00006-7. PubMed DOI
Bendová Z., Sumová A., Mikkelsen J.D. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience. 2009;159:599–609. doi: 10.1016/j.neuroscience.2009.01.016. PubMed DOI
Bendová Z., Sládek M., Svobodová I. The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochem. Int. 2012;61:43–47. doi: 10.1016/j.neuint.2012.04.016. PubMed DOI
Wang L.M., Schroeder A., Loh D., Smith D., Lin K., Han J.H., Michel S., Hummer D.L., Ehlen J.C., Albers H.E., et al. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. Eur. J. Neurosci. 2008;27:1771–1779. doi: 10.1111/j.1460-9568.2008.06144.x. PubMed DOI PMC
Kubová H., Bendová Z., Moravcová S., Pačesová D., Rocha L.L., Mareš P. Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors. Front. Mol. Neurosci. 2018;11:382. doi: 10.3389/fnmol.2018.00382. PubMed DOI PMC
Honma S., Katsuno Y., Shinohara K., Abe H., Honma K. Circadian rhythm and response to light of extracellular glutamate and aspartate in rat suprachiasmatic nucleus. Am. J. Physiol. 1996;271 Pt 2:R579–R585. doi: 10.1152/ajpregu.1996.271.3.R579. PubMed DOI
Tosini G., Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996;272:419–421. doi: 10.1126/science.272.5260.419. PubMed DOI
Ruan G.X., Zhang D.Q., Zhou T., Yamazaki S., McMahon D.G. Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. USA. 2006;103:9703–9708. doi: 10.1073/pnas.0601940103. PubMed DOI PMC
Tosini G., Davidson A.J., Fukuhara C., Kasamatsu M., Castanon-Cervantes O. Localization of a circadian clock in mammalian photoreceptors. FASEB J. 2007;21:3866–3871. doi: 10.1096/fj.07-8371com. PubMed DOI PMC
Jaeger C., Sandu C., Malan A., Mellac K., Hicks D., Felder-Schmittbuhl M.P. Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators. FASEB J. 2015;29:1493–1504. doi: 10.1096/fj.14-261214. PubMed DOI
Kamphuis W., Cailotto C., Dijk F., Bergen A., Buijs R.M. Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem. Biophys. Res. Commun. 2005;330:18–26. doi: 10.1016/j.bbrc.2005.02.118. PubMed DOI
González-Menéndez I., Contreras F., Cernuda-Cernuda R., García-Fernández J.M. Daily rhythm of melanopsin-expressing cells in the mouse retina. Front. Cell Neurosci. 2009;3:3. doi: 10.3389/neuro.03.003.2009. PubMed DOI PMC
González-Menéndez I., Contreras F., Cernuda-Cernuda R., García-Fernández J.M. No loss of melanopsin-expressing ganglion cells detected during postnatal development of the mouse retina. Histol. Histopathol. 2010;25:73–82. doi: 10.14670/HH-25.73. PubMed DOI
Sakamoto K., Liu C., Tosini G. Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J. Neurosci. 2004;24:9693–9697. doi: 10.1523/JNEUROSCI.2556-04.2004. PubMed DOI PMC
Hannibal J., Georg B., Fahrenkrug J. Differential expression of melanopsin mRNA and protein in Brown Norwegian rats. Exp. Eye Res. 2013;106:55–63. doi: 10.1016/j.exer.2012.11.006. PubMed DOI
Nieto P.S., Acosta-Rodriguez V.A., Valdez D.J., Guido M.E. Differential responses of the mammalian retinal ganglion cell line RGC-5 to physiological stimuli and trophic factors. Neurochem. Int. 2010;57:216–226. doi: 10.1016/j.neuint.2010.05.013. PubMed DOI
Benedetto M.M., Guido M.E., Contin M.A. Non-Visual Photopigments Effects of Constant Light-Emitting Diode Light Exposure on the Inner Retina of Wistar Rats. Front. Neurol. 2017;8:417. doi: 10.3389/fneur.2017.00417. PubMed DOI PMC
Peichl L. Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005;287:1001–1012. doi: 10.1002/ar.a.20262. PubMed DOI
Gastel J.A., Roseboom P.H., Rinaldi P.A., Weller J.L., Klein D.C. Melatonin production: Proteasomal proteolysisin serotoninN-acetyltransferase regulation. Science. 1998;279:1358–1360. doi: 10.1126/science.279.5355.1358. PubMed DOI
Fukuhara C., Dirden J.C., Tosini G. Circadian expression of period 1, period 2, and arylalkylamine N-acetyltransferase mRNA in the rat pineal gland under different light conditions. Neurosci. Lett. 2000;286:167–170. doi: 10.1016/S0304-3940(00)01129-0. PubMed DOI
Simonneaux V., Poirel V.J., Garidou M.L., Nguyen D., Diaz-Rodriguez E., Pévet P. Daily rhythm and regulation of clock gene expression in the rat pineal gland. Brain Res. Mol. Brain Res. 2004;120:164–172. doi: 10.1016/j.molbrainres.2003.10.019. PubMed DOI
Karolczak M., Burbach G.J., Sties G., Korf H.W., Stehle J.H. Clock gene mRNA and protein rhythms in the pineal gland of mice. Eur. J. Neurosci. 2004;19:3382–3388. doi: 10.1111/j.0953-816X.2004.03444.x. PubMed DOI
Wongchitrat P., Felder-Schmittbuhl M.P., Phansuwan-Pujito P., Pévet P., Simonneaux V. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine. Eur. J. Neurosci. 2009;29:2009–2016. doi: 10.1111/j.1460-9568.2009.06742.x. PubMed DOI
Simonneaux V., Ribelayga C. Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 2003;55:325–395. doi: 10.1124/pr.55.2.2. PubMed DOI
Bellavía S.L., Gallará R.V. Modification of the beta- and alpha2-adrenergic sensitivity of rat submandibular glands by environmental stimuli and stress. Arch. Oral Biol. 1998;43:933–939. doi: 10.1016/S0003-9969(98)00084-3. PubMed DOI