The Circadian Rhythms of STAT3 in the Rat Pineal Gland and Its Involvement in Arylalkylamine-N-Acetyltransferase Regulation

. 2021 Oct 18 ; 11 (10) : . [epub] 20211018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685476

Grantová podpora
18-08423S Grantová Agentura České Republiky
1198218 Grantová Agentura, Univerzita Karlova
PharmaBrain" No. CZ.CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund-Projects

In rodents, the melatonin production by the pineal gland is controlled through adrenergic signaling from the suprachiasmatic nuclei and regulation of the principal enzyme in its synthesis, arylalkylamine-N-acetyltransferase (AANAT). In the present study, we identified increased isoprenaline-induced aa-nat expression and nocturnal AANAT activity in the pineal glands in response to the silencing of the signal transducer and activator of transcription 3 (STAT3) with siRNA or STAT3 inhibitors WP1066 and AZD1480. This AANAT activity enhancement in vivo did not interfere with light-induced AANAT suppression. Systemic or in vitro lipopolysaccharide (LPS) administration markedly increased Stat3 expression and STAT3 phosphorylation, but it did not significantly affect AANAT expression or activity. Simultaneous LPS administration and Stat3 silencing enhanced the aa-nat transcription and AANAT activity to a similar extent as Stat3 inhibition without LPS co-administration. Furthermore, we describe the circadian rhythmicity in Stat3 expression and the phosphorylated form of STAT3 protein in the rat pineal gland. Our data suggest that the higher nocturnal endogenous level of STAT3 in the pineal gland decelerates or hampers the process of NA-induced AANAT activation or affects the AANAT enzyme stability.

Zobrazit více v PubMed

Klein D.C. Photoneural Regulation of the Mammalian Pineal Gland. In: Evered D., Clark S., editors. Novartis Foundation Symposia. John Wiley & Sons, Ltd.; Chichester, UK: 2008. pp. 38–56. PubMed

Johnston J.D., Skene D.J. 60 Years of Neuroendocrinology: Regulation of Mammalian Neuroendocrine Physiology and Rhythms by Melatonin. J. Endocrinol. 2015;226:T187–T198. doi: 10.1530/JOE-15-0119. PubMed DOI

Simonneaux V., Sinitskaya N., Salingre A., Garidou M.L., Pévet P. Rat and Syrian Hamster: Two Models for the Regulation of AANAT Gene Expression. Chronobiol. Int. 2006;23:351–359. doi: 10.1080/07420520500521962. PubMed DOI

Chong N.W., Bernard M., Klein D.C. Characterization of the Chicken Serotonin N-Acetyltransferase Gene. Activation via Clock Gene Heterodimer/E Box Interaction. J. Biol. Chem. 2000;275:32991–32998. doi: 10.1074/jbc.M005671200. PubMed DOI

Roseboom P.H., Coon S.L., Baler R., McCune S.K., Weller J.L., Klein D.C. Melatonin Synthesis: Analysis of the More than 150-Fold Nocturnal Increase in Serotonin N-Acetyltransferase Messenger Ribonucleic Acid in the Rat Pineal Gland. Endocrinology. 1996;137:3033–3045. doi: 10.1210/endo.137.7.8770929. PubMed DOI

Illnerová H., Vanĕcek J., Krecek J., Wetterberg L., Sääf J. Effect of One Minute Exposure to Light at Night on Rat Pineal Serotonin N-Acetyltransferase and Melatonin. J. Neurochem. 1979;32:673–675. doi: 10.1111/j.1471-4159.1979.tb00407.x. PubMed DOI

Illnerová H., Trávnícková Z., Jác M., Sumová A. Comparison of the Pineal and SCN Rhythmicity. Effect of Photic and Non-Photic Stimuli, Photoperiod, and Age. Adv. Exp. Med. Biol. 1999;460:247–260. doi: 10.1007/0-306-46814-x_27. PubMed DOI

Anisimov V.N., Vinogradova I.A., Panchenko A.V., Popovich I.G., Zabezhinski M.A. Light-at-Night-Induced Circadian Disruption, Cancer and Aging. Curr. Aging Sci. 2012;5:170–177. doi: 10.2174/1874609811205030002. PubMed DOI

Gastel J.A., Roseboom P.H., Rinaldi P.A., Weller J.L., Klein D.C. Melatonin Production: Proteasomal Proteolysis in Serotonin N-Acetyltransferase Regulation. Science. 1998;279:1358–1360. doi: 10.1126/science.279.5355.1358. PubMed DOI

Klein D.C., Coon S.L., Roseboom P.H., Weller J.L., Bernard M., Gastel J.A., Zatz M., Iuvone P.M., Rodriguez I.R., Bégay V., et al. The Melatonin Rhythm-Generating Enzyme: Molecular Regulation of Serotonin N-Acetyltransferase in the Pineal Gland. Recent Prog. Horm. Res. 1997;52:307–357. discussion 357–358. PubMed

Ho A.K., Chik C.L. Modulation of Aanat Gene Transcription in the Rat Pineal Gland. J. Neurochem. 2010;112:321–331. doi: 10.1111/j.1471-4159.2009.06457.x. PubMed DOI

Schomerus C., Korf H.-W. Mechanisms Regulating Melatonin Synthesis in the Mammalian Pineal Organ. Ann. N. Y. Acad. Sci. 2005;1057:372–383. doi: 10.1196/annals.1356.028. PubMed DOI

Nicolas C.S., Amici M., Bortolotto Z.A., Doherty A., Csaba Z., Fafouri A., Dournaud P., Gressens P., Collingridge G.L., Peineau S. The Role of JAK-STAT Signaling within the CNS. JAKSTAT. 2013;2:e22925. doi: 10.4161/jkst.22925. PubMed DOI PMC

Qing Y., Stark G.R. Alternative Activation of STAT1 and STAT3 in Response to Interferon-Gamma. J. Biol. Chem. 2004;279:41679–41685. doi: 10.1074/jbc.M406413200. PubMed DOI

Zhang X., Blenis J., Li H.C., Schindler C., Chen-Kiang S. Requirement of Serine Phosphorylation for Formation of STAT-Promoter Complexes. Science. 1995;267:1990–1994. doi: 10.1126/science.7701321. PubMed DOI

Chung J., Uchida E., Grammer T.C., Blenis J. STAT3 Serine Phosphorylation by ERK-Dependent and -Independent Pathways Negatively Modulates Its Tyrosine Phosphorylation. Mol. Cell. Biol. 1997;17:6508–6516. doi: 10.1128/MCB.17.11.6508. PubMed DOI PMC

Hillmer E.J., Zhang H., Li H.S., Watowich S.S. STAT3 Signaling in Immunity. Cytokine Growth Factor Rev. 2016;31:1–15. doi: 10.1016/j.cytogfr.2016.05.001. PubMed DOI PMC

Moravcová S., Červená K., Pačesová D., Bendová Z. Identification of STAT3 and STAT5 Proteins in the Rat Suprachiasmatic Nucleus and the Day/Night Difference in Astrocytic STAT3 Phosphorylation in Response to Lipopolysaccharide. J. Neurosci. Res. 2016;94:99–108. doi: 10.1002/jnr.23673. PubMed DOI

Moravcová S., Pačesová D., Melkes B., Kyclerová H., Spišská V., Novotný J., Bendová Z. The Day/Night Difference in the Circadian Clock’s Response to Acute Lipopolysaccharide and the Rhythmic Stat3 Expression in the Rat Suprachiasmatic Nucleus. PLoS ONE. 2018;13:e0199405. doi: 10.1371/journal.pone.0199405. PubMed DOI PMC

Kubištová A., Spišská V., Petrželková L., Hrubcová L., Moravcová S., Maierová L., Bendová Z. Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life. Biomedicines. 2020;8:579. doi: 10.3390/biomedicines8120579. PubMed DOI PMC

Guan X., Wang Q., Liu M., Sun A., Li X. Possible Involvement of the IL-6/JAK2/STAT3 Pathway in the Hypothalamus in Depressive-Like Behavior of Rats Exposed to Chronic Mild Stress. Neuropsychobiology. 2021;80:279–287. doi: 10.1159/000509908. PubMed DOI

Marrero B., He C., Oh H.-M., Ukwu U.T., Yu C.-R., Dambuza I.M., Sun L., Egwuagu C.E. Persistent Activation of STAT3 Pathway in the Retina Induced Vision Impairment and Retinal Degenerative Changes in Ageing Mice. Adv. Exp. Med. Biol. 2019;1185:353–358. doi: 10.1007/978-3-030-27378-1_58. PubMed DOI PMC

Iwamaru A., Szymanski S., Iwado E., Aoki H., Yokoyama T., Fokt I., Hess K., Conrad C., Madden T., Sawaya R., et al. A Novel Inhibitor of the STAT3 Pathway Induces Apoptosis in Malignant Glioma Cells Both in Vitro and in Vivo. Oncogene. 2007;26:2435–2444. doi: 10.1038/sj.onc.1210031. PubMed DOI

Plimack E.R., Lorusso P.M., McCoon P., Tang W., Krebs A.D., Curt G., Eckhardt S.G. AZD1480: A Phase I Study of a Novel JAK2 Inhibitor in Solid Tumors. Oncologist. 2013;18:819–820. doi: 10.1634/theoncologist.2013-0198. PubMed DOI PMC

Watanabe K., Koibuchi N., Ohtake H., Yamaoka S. Circadian Rhythms of Vasopressin Release in Primary Cultures of Rat Suprachiasmatic Nucleus. Brain Res. 1993;624:115–120. doi: 10.1016/0006-8993(93)90067-W. PubMed DOI

Svobodova I., Bhattaracharya A., Ivetic M., Bendova Z., Zemkova H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front. Pharmacol. 2018;9:192. doi: 10.3389/fphar.2018.00192. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Frontini A., Bertolotti P., Tonello C., Valerio A., Nisoli E., Cinti S., Giordano A. Leptin-Dependent STAT3 Phosphorylation in Postnatal Mouse Hypothalamus. Brain Res. 2008;1215:105–115. doi: 10.1016/j.brainres.2008.03.078. PubMed DOI

Trávnícková Z., Illnerová H. Melatonin Entrainment of the Circadian N-Acetyltransferase Rhythm in the Newborn Rat Pineal Gland. J. Pineal Res. 1997;23:136–141. doi: 10.1111/j.1600-079X.1997.tb00346.x. PubMed DOI

Bendová Z., Sumová A. Photoperiodic Regulation of PER1 and PER2 Protein Expression in Rat Peripheral Tissues. Physiol. Res. 2006;55:623–632. PubMed

Wongchitrat P., Felder-Schmittbuhl M.-P., Govitrapong P., Phansuwan-Pujito P., Simonneaux V. A Noradrenergic Sensitive Endogenous Clock Is Present in the Rat Pineal Gland. Neuroendocrinology. 2011;94:75–83. doi: 10.1159/000327430. PubMed DOI

Maronde E., Pfeffer M., Olcese J., Molina C.A., Schlotter F., Dehghani F., Korf H.W., Stehle J.H. Transcription Factors in Neuroendocrine Regulation: Rhythmic Changes in PCREB and ICER Levels Frame Melatonin Synthesis. J. Neurosci. 1999;19:3326–3336. doi: 10.1523/JNEUROSCI.19-09-03326.1999. PubMed DOI PMC

da Silveira Cruz-Machado S., Carvalho-Sousa C.E., Tamura E.K., Pinato L., Cecon E., Fernandes P.A.C.M., de Avellar M.C.W., Ferreira Z.S., Markus R.P. TLR4 and CD14 Receptors Expressed in Rat Pineal Gland Trigger NFKB Pathway. J. Pineal Res. 2010;49:183–192. doi: 10.1111/j.1600-079X.2010.00785.x. PubMed DOI

Pigazzi M., Manara E., Baron E., Basso G. MiR-34b Targets Cyclic AMP-Responsive Element Binding Protein in Acute Myeloid Leukemia. Cancer Res. 2009;69:2471–2478. doi: 10.1158/0008-5472.CAN-08-3404. PubMed DOI

Lin L., Yao Z., Bhuvaneshwar K., Gusev Y., Kallakury B., Yang S., Shetty K., He A.R. Transcriptional Regulation of STAT3 by SPTBN1 and SMAD3 in HCC through CAMP-Response Element-Binding Proteins ATF3 and CREB2. Carcinogenesis. 2014;35:2393–2403. doi: 10.1093/carcin/bgu163. PubMed DOI

Wheaton K.L., Hansen K.F., Aten S., Sullivan K.A., Yoon H., Hoyt K.R., Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J. Biol. Rhythms. 2018;33:497–514. doi: 10.1177/0748730418791713. PubMed DOI PMC

Yu H., Pardoll D., Jove R. STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734. PubMed DOI PMC

Baler R., Covington S., Klein D.C. The Rat Arylalkylamine N-Acetyltransferase Gene Promoter. CAMP Activation via a CAMP-Responsive Element-CCAAT Complex. J. Biol. Chem. 1997;272:6979–6985. doi: 10.1074/jbc.272.11.6979. PubMed DOI

Carter D.A. Rhythms of Cellular Immediate-Early Gene Expression: More than Just an Early Response. Exp. Physiol. 1997;82:237–244. doi: 10.1113/expphysiol.1997.sp004019. PubMed DOI

Guillaumond F., Becquet D., Bosler O., François-Bellan A.M. Adrenergic Inducibility of AP-1 Binding in the Rat Pineal Gland Depends on Prior Photoperiod. J. Neurochem. 2002;83:157–166. doi: 10.1046/j.1471-4159.2002.01140.x. PubMed DOI

Davies J.S., Klein D.C., Carter D.A. Selective Genomic Targeting by FRA-2/FOSL2 Transcription Factor: Regulation of the Rgs4 Gene Is Mediated by a Variant Activator Protein 1 (AP-1) Promoter Sequence/CREB-Binding Protein (CBP) Mechanism. J. Biol. Chem. 2011;286:15227–15239. doi: 10.1074/jbc.M110.201996. PubMed DOI PMC

Hulboy D.L., Matrisian L.M., Crawford H.C. Loss of JunB Activity Enhances Stromelysin 1 Expression in a Model of the Epithelial-to-Mesenchymal Transition of Mouse Skin Tumors. Mol. Cell. Biol. 2001;21:5478–5487. doi: 10.1128/MCB.21.16.5478-5487.2001. PubMed DOI PMC

Chik C.L., Wloka M.T., Price D.M., Ho A.K. The Role of Repressor Proteins in the Adrenergic Induction of Type II Iodothyronine Deiodinase in Rat Pinealocytes. Endocrinology. 2007;148:3523–3531. doi: 10.1210/en.2007-0166. PubMed DOI

Coffer P., Lutticken C., van Puijenbroek A., Klop-de Jonge M., Horn F., Kruijer W. Transcriptional Regulation of the JunB Promoter: Analysis of STAT-Mediated Signal Transduction. Oncogene. 1995;10:985–994. PubMed

Higashi N., Kunimoto H., Kaneko S., Sasaki T., Ishii M., Kojima H., Nakajima K. Cytoplasmic C-Fos Induced by the YXXQ-Derived STAT3 Signal Requires the Co-Operative MEK/ERK Signal for Its Nuclear Translocation. Genes Cells. 2004;9:233–242. doi: 10.1111/j.1356-9597.2004.00715.x. PubMed DOI

Shi M., Liu D., Duan H., Han C., Wei B., Qian L., Chen C., Guo L., Hu M., Yu M., et al. Catecholamine Up-Regulates MMP-7 Expression by Activating AP-1 and STAT3 in Gastric Cancer. Mol. Cancer. 2010;9:269. doi: 10.1186/1476-4598-9-269. PubMed DOI PMC

Schuringa J.J., Timmer H., Luttickhuizen D., Vellenga E., Kruijer W. C-Jun and c-Fos Cooperate with STAT3 in IL-6-Induced Transactivation of the IL-6 Respone Element (IRE) Cytokine. 2001;14:78–87. doi: 10.1006/cyto.2001.0856. PubMed DOI

Carpenter R.L., Lo H.-W. STAT3 Target Genes Relevant to Human Cancers. Cancers. 2014;6:897–925. doi: 10.3390/cancers6020897. PubMed DOI PMC

Stehle J.H., Foulkes N.S., Molina C.A., Simonneaux V., Pévet P., Sassone-Corsi P. Adrenergic Signals Direct Rhythmic Expression of Transcriptional Repressor CREM in the Pineal Gland. Nature. 1993;365:314–320. doi: 10.1038/365314a0. PubMed DOI

Foulkes N.S., Borjigin J., Snyder S.H., Sassone-Corsi P. Transcriptional Control of Circadian Hormone Synthesis via the CREM Feedback Loop. Proc. Natl. Acad. Sci. USA. 1996;93:14140–14145. doi: 10.1073/pnas.93.24.14140. PubMed DOI PMC

Lund I.V., Hu Y., Raol Y.H., Benham R.S., Faris R., Russek S.J., Brooks-Kayal A.R. BDNF Selectively Regulates GABAA Receptor Transcription by Activation of the JAK/STAT Pathway. Sci. Signal. 2008;1:ra9. doi: 10.1126/scisignal.1162396. PubMed DOI PMC

Pfeffer M., Maronde E., Molina C.A., Korf H.W., Stehle J.H. Inducible Cyclic AMP Early Repressor Protein in Rat Pinealocytes: A Highly Sensitive Natural Reporter for Regulated Gene Transcription. Mol. Pharmacol. 1999;56:279–289. doi: 10.1124/mol.56.2.279. PubMed DOI

Yu J., Yuan X., Liu Y., Zhang K., Wang J., Zhang H., Liu F. Delayed Administration of WP1066, an STAT3 Inhibitor, Ameliorates Radiation-Induced Lung Injury in Mice. Lung. 2016;194:67–74. doi: 10.1007/s00408-015-9821-8. PubMed DOI

Liu Q., Xie W., Wang Y., Chen S., Han J., Wang L., Gui P., Wu Q. JAK2/STAT1-Mediated HMGB1 Translocation Increases Inflammation and Cell Death in a Ventilator-Induced Lung Injury Model. Lab. Investig. 2019;99:1810–1821. doi: 10.1038/s41374-019-0308-8. PubMed DOI

Huang H., Constante M., Layoun A., Santos M.M. Contribution of STAT3 and SMAD4 Pathways to the Regulation of Hepcidin by Opposing Stimuli. Blood. 2009;113:3593–3599. doi: 10.1182/blood-2008-08-173641. PubMed DOI PMC

Burton M.D., Sparkman N.L., Johnson R.W. Inhibition of Interleukin-6 Trans-Signaling in the Brain Facilitates Recovery from Lipopolysaccharide-Induced Sickness Behavior. J. Neuroinflamm. 2011;8:54. doi: 10.1186/1742-2094-8-54. PubMed DOI PMC

Han J.H., Lee Y.S., Im J.H., Ham Y.W., Lee H.P., Han S.B., Hong J.T. Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway. Mar. Drugs. 2019;17:123. doi: 10.3390/md17020123. PubMed DOI PMC

Herman A.P., Bochenek J., Skipor J., Król K., Krawczyńska A., Antushevich H., Pawlina B., Marciniak E., Tomaszewska-Zaremba D. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study. BioMed Res. Int. 2015;2015:e526464. doi: 10.1155/2015/526464. PubMed DOI PMC

Fernandes P.A.C.M., Cecon E., Markus R.P., Ferreira Z.S. Effect of TNF-Alpha on the Melatonin Synthetic Pathway in the Rat Pineal Gland: Basis for a “feedback” of the Immune Response on Circadian Timing. J. Pineal Res. 2006;41:344–350. doi: 10.1111/j.1600-079X.2006.00373.x. PubMed DOI

Barbosa Lima L.E., Muxel S.M., Kinker G.S., Carvalho-Sousa C.E., da Silveira Cruz-Machado S., Markus R.P., Fernandes P.A.C.M. STAT1-NFκB Crosstalk Triggered by Interferon Gamma Regulates Noradrenaline-Induced Pineal Hormonal Production. J. Pineal Res. 2019;67:e12599. doi: 10.1111/jpi.12599. PubMed DOI

Herman A.P., Bochenek J., Król K., Krawczyńska A., Antushevich H., Pawlina B., Herman A., Romanowicz K., Tomaszewska-Zaremba D. Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin. Mediat. Inflamm. 2016;2016:2589483. doi: 10.1155/2016/2589483. PubMed DOI PMC

Lv S., Li J., Qiu X., Li W., Zhang C., Zhang Z.-N., Luan B. A Negative Feedback Loop of ICER and NF-ΚB Regulates TLR Signaling in Innate Immune Responses. Cell Death Differ. 2017;24:492–499. doi: 10.1038/cdd.2016.148. PubMed DOI PMC

Takamiya A., Takeda M., Yoshida A., Kiyama H. Inflammation Induces Serine Protease Inhibitor 3 Expression in the Rat Pineal Gland. Neuroscience. 2002;113:387–394. doi: 10.1016/S0306-4522(02)00198-7. PubMed DOI

Nicolas C.S., Peineau S., Amici M., Csaba Z., Fafouri A., Javalet C., Collett V.J., Hildebrandt L., Seaton G., Choi S.-L., et al. The Jak/STAT Pathway Is Involved in Synaptic Plasticity. Neuron. 2012;73:374–390. doi: 10.1016/j.neuron.2011.11.024. PubMed DOI PMC

Tang Z., Xu T., Li Y., Fei W., Yang G., Hong Y. Inhibition of CRY2 by STAT3/MiRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. Mol. Ther. Nucleic Acids. 2020;19:865–876. doi: 10.1016/j.omtn.2019.12.020. PubMed DOI PMC

Luo W., Sehgal A. Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit. Cell. 2012;148:765–779. doi: 10.1016/j.cell.2011.12.024. PubMed DOI PMC

Lee H., Jeong A.J., Ye S.-K. Highlighted STAT3 as a Potential Drug Target for Cancer Therapy. BMB Rep. 2019;52:415–423. doi: 10.5483/BMBRep.2019.52.7.152. PubMed DOI PMC

Zou S., Tong Q., Liu B., Huang W., Tian Y., Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020;19:145. doi: 10.1186/s12943-020-01258-7. PubMed DOI PMC

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 Signalling Axis in Cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...