The Circadian Rhythms of STAT3 in the Rat Pineal Gland and Its Involvement in Arylalkylamine-N-Acetyltransferase Regulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08423S
Grantová Agentura České Republiky
1198218
Grantová Agentura, Univerzita Karlova
PharmaBrain" No. CZ.CZ.02.1.01/0.0/0.0/16_025/0007444
European Regional Development Fund-Projects
PubMed
34685476
PubMed Central
PMC8541109
DOI
10.3390/life11101105
PII: life11101105
Knihovny.cz E-zdroje
- Klíčová slova
- STAT3, arylalkylamine-N-acetyltransferase, circadian rhythms, lipopolysaccharide, pineal gland, rat,
- Publikační typ
- časopisecké články MeSH
In rodents, the melatonin production by the pineal gland is controlled through adrenergic signaling from the suprachiasmatic nuclei and regulation of the principal enzyme in its synthesis, arylalkylamine-N-acetyltransferase (AANAT). In the present study, we identified increased isoprenaline-induced aa-nat expression and nocturnal AANAT activity in the pineal glands in response to the silencing of the signal transducer and activator of transcription 3 (STAT3) with siRNA or STAT3 inhibitors WP1066 and AZD1480. This AANAT activity enhancement in vivo did not interfere with light-induced AANAT suppression. Systemic or in vitro lipopolysaccharide (LPS) administration markedly increased Stat3 expression and STAT3 phosphorylation, but it did not significantly affect AANAT expression or activity. Simultaneous LPS administration and Stat3 silencing enhanced the aa-nat transcription and AANAT activity to a similar extent as Stat3 inhibition without LPS co-administration. Furthermore, we describe the circadian rhythmicity in Stat3 expression and the phosphorylated form of STAT3 protein in the rat pineal gland. Our data suggest that the higher nocturnal endogenous level of STAT3 in the pineal gland decelerates or hampers the process of NA-induced AANAT activation or affects the AANAT enzyme stability.
Zobrazit více v PubMed
Klein D.C. Photoneural Regulation of the Mammalian Pineal Gland. In: Evered D., Clark S., editors. Novartis Foundation Symposia. John Wiley & Sons, Ltd.; Chichester, UK: 2008. pp. 38–56. PubMed
Johnston J.D., Skene D.J. 60 Years of Neuroendocrinology: Regulation of Mammalian Neuroendocrine Physiology and Rhythms by Melatonin. J. Endocrinol. 2015;226:T187–T198. doi: 10.1530/JOE-15-0119. PubMed DOI
Simonneaux V., Sinitskaya N., Salingre A., Garidou M.L., Pévet P. Rat and Syrian Hamster: Two Models for the Regulation of AANAT Gene Expression. Chronobiol. Int. 2006;23:351–359. doi: 10.1080/07420520500521962. PubMed DOI
Chong N.W., Bernard M., Klein D.C. Characterization of the Chicken Serotonin N-Acetyltransferase Gene. Activation via Clock Gene Heterodimer/E Box Interaction. J. Biol. Chem. 2000;275:32991–32998. doi: 10.1074/jbc.M005671200. PubMed DOI
Roseboom P.H., Coon S.L., Baler R., McCune S.K., Weller J.L., Klein D.C. Melatonin Synthesis: Analysis of the More than 150-Fold Nocturnal Increase in Serotonin N-Acetyltransferase Messenger Ribonucleic Acid in the Rat Pineal Gland. Endocrinology. 1996;137:3033–3045. doi: 10.1210/endo.137.7.8770929. PubMed DOI
Illnerová H., Vanĕcek J., Krecek J., Wetterberg L., Sääf J. Effect of One Minute Exposure to Light at Night on Rat Pineal Serotonin N-Acetyltransferase and Melatonin. J. Neurochem. 1979;32:673–675. doi: 10.1111/j.1471-4159.1979.tb00407.x. PubMed DOI
Illnerová H., Trávnícková Z., Jác M., Sumová A. Comparison of the Pineal and SCN Rhythmicity. Effect of Photic and Non-Photic Stimuli, Photoperiod, and Age. Adv. Exp. Med. Biol. 1999;460:247–260. doi: 10.1007/0-306-46814-x_27. PubMed DOI
Anisimov V.N., Vinogradova I.A., Panchenko A.V., Popovich I.G., Zabezhinski M.A. Light-at-Night-Induced Circadian Disruption, Cancer and Aging. Curr. Aging Sci. 2012;5:170–177. doi: 10.2174/1874609811205030002. PubMed DOI
Gastel J.A., Roseboom P.H., Rinaldi P.A., Weller J.L., Klein D.C. Melatonin Production: Proteasomal Proteolysis in Serotonin N-Acetyltransferase Regulation. Science. 1998;279:1358–1360. doi: 10.1126/science.279.5355.1358. PubMed DOI
Klein D.C., Coon S.L., Roseboom P.H., Weller J.L., Bernard M., Gastel J.A., Zatz M., Iuvone P.M., Rodriguez I.R., Bégay V., et al. The Melatonin Rhythm-Generating Enzyme: Molecular Regulation of Serotonin N-Acetyltransferase in the Pineal Gland. Recent Prog. Horm. Res. 1997;52:307–357. discussion 357–358. PubMed
Ho A.K., Chik C.L. Modulation of Aanat Gene Transcription in the Rat Pineal Gland. J. Neurochem. 2010;112:321–331. doi: 10.1111/j.1471-4159.2009.06457.x. PubMed DOI
Schomerus C., Korf H.-W. Mechanisms Regulating Melatonin Synthesis in the Mammalian Pineal Organ. Ann. N. Y. Acad. Sci. 2005;1057:372–383. doi: 10.1196/annals.1356.028. PubMed DOI
Nicolas C.S., Amici M., Bortolotto Z.A., Doherty A., Csaba Z., Fafouri A., Dournaud P., Gressens P., Collingridge G.L., Peineau S. The Role of JAK-STAT Signaling within the CNS. JAKSTAT. 2013;2:e22925. doi: 10.4161/jkst.22925. PubMed DOI PMC
Qing Y., Stark G.R. Alternative Activation of STAT1 and STAT3 in Response to Interferon-Gamma. J. Biol. Chem. 2004;279:41679–41685. doi: 10.1074/jbc.M406413200. PubMed DOI
Zhang X., Blenis J., Li H.C., Schindler C., Chen-Kiang S. Requirement of Serine Phosphorylation for Formation of STAT-Promoter Complexes. Science. 1995;267:1990–1994. doi: 10.1126/science.7701321. PubMed DOI
Chung J., Uchida E., Grammer T.C., Blenis J. STAT3 Serine Phosphorylation by ERK-Dependent and -Independent Pathways Negatively Modulates Its Tyrosine Phosphorylation. Mol. Cell. Biol. 1997;17:6508–6516. doi: 10.1128/MCB.17.11.6508. PubMed DOI PMC
Hillmer E.J., Zhang H., Li H.S., Watowich S.S. STAT3 Signaling in Immunity. Cytokine Growth Factor Rev. 2016;31:1–15. doi: 10.1016/j.cytogfr.2016.05.001. PubMed DOI PMC
Moravcová S., Červená K., Pačesová D., Bendová Z. Identification of STAT3 and STAT5 Proteins in the Rat Suprachiasmatic Nucleus and the Day/Night Difference in Astrocytic STAT3 Phosphorylation in Response to Lipopolysaccharide. J. Neurosci. Res. 2016;94:99–108. doi: 10.1002/jnr.23673. PubMed DOI
Moravcová S., Pačesová D., Melkes B., Kyclerová H., Spišská V., Novotný J., Bendová Z. The Day/Night Difference in the Circadian Clock’s Response to Acute Lipopolysaccharide and the Rhythmic Stat3 Expression in the Rat Suprachiasmatic Nucleus. PLoS ONE. 2018;13:e0199405. doi: 10.1371/journal.pone.0199405. PubMed DOI PMC
Kubištová A., Spišská V., Petrželková L., Hrubcová L., Moravcová S., Maierová L., Bendová Z. Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life. Biomedicines. 2020;8:579. doi: 10.3390/biomedicines8120579. PubMed DOI PMC
Guan X., Wang Q., Liu M., Sun A., Li X. Possible Involvement of the IL-6/JAK2/STAT3 Pathway in the Hypothalamus in Depressive-Like Behavior of Rats Exposed to Chronic Mild Stress. Neuropsychobiology. 2021;80:279–287. doi: 10.1159/000509908. PubMed DOI
Marrero B., He C., Oh H.-M., Ukwu U.T., Yu C.-R., Dambuza I.M., Sun L., Egwuagu C.E. Persistent Activation of STAT3 Pathway in the Retina Induced Vision Impairment and Retinal Degenerative Changes in Ageing Mice. Adv. Exp. Med. Biol. 2019;1185:353–358. doi: 10.1007/978-3-030-27378-1_58. PubMed DOI PMC
Iwamaru A., Szymanski S., Iwado E., Aoki H., Yokoyama T., Fokt I., Hess K., Conrad C., Madden T., Sawaya R., et al. A Novel Inhibitor of the STAT3 Pathway Induces Apoptosis in Malignant Glioma Cells Both in Vitro and in Vivo. Oncogene. 2007;26:2435–2444. doi: 10.1038/sj.onc.1210031. PubMed DOI
Plimack E.R., Lorusso P.M., McCoon P., Tang W., Krebs A.D., Curt G., Eckhardt S.G. AZD1480: A Phase I Study of a Novel JAK2 Inhibitor in Solid Tumors. Oncologist. 2013;18:819–820. doi: 10.1634/theoncologist.2013-0198. PubMed DOI PMC
Watanabe K., Koibuchi N., Ohtake H., Yamaoka S. Circadian Rhythms of Vasopressin Release in Primary Cultures of Rat Suprachiasmatic Nucleus. Brain Res. 1993;624:115–120. doi: 10.1016/0006-8993(93)90067-W. PubMed DOI
Svobodova I., Bhattaracharya A., Ivetic M., Bendova Z., Zemkova H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front. Pharmacol. 2018;9:192. doi: 10.3389/fphar.2018.00192. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Frontini A., Bertolotti P., Tonello C., Valerio A., Nisoli E., Cinti S., Giordano A. Leptin-Dependent STAT3 Phosphorylation in Postnatal Mouse Hypothalamus. Brain Res. 2008;1215:105–115. doi: 10.1016/j.brainres.2008.03.078. PubMed DOI
Trávnícková Z., Illnerová H. Melatonin Entrainment of the Circadian N-Acetyltransferase Rhythm in the Newborn Rat Pineal Gland. J. Pineal Res. 1997;23:136–141. doi: 10.1111/j.1600-079X.1997.tb00346.x. PubMed DOI
Bendová Z., Sumová A. Photoperiodic Regulation of PER1 and PER2 Protein Expression in Rat Peripheral Tissues. Physiol. Res. 2006;55:623–632. PubMed
Wongchitrat P., Felder-Schmittbuhl M.-P., Govitrapong P., Phansuwan-Pujito P., Simonneaux V. A Noradrenergic Sensitive Endogenous Clock Is Present in the Rat Pineal Gland. Neuroendocrinology. 2011;94:75–83. doi: 10.1159/000327430. PubMed DOI
Maronde E., Pfeffer M., Olcese J., Molina C.A., Schlotter F., Dehghani F., Korf H.W., Stehle J.H. Transcription Factors in Neuroendocrine Regulation: Rhythmic Changes in PCREB and ICER Levels Frame Melatonin Synthesis. J. Neurosci. 1999;19:3326–3336. doi: 10.1523/JNEUROSCI.19-09-03326.1999. PubMed DOI PMC
da Silveira Cruz-Machado S., Carvalho-Sousa C.E., Tamura E.K., Pinato L., Cecon E., Fernandes P.A.C.M., de Avellar M.C.W., Ferreira Z.S., Markus R.P. TLR4 and CD14 Receptors Expressed in Rat Pineal Gland Trigger NFKB Pathway. J. Pineal Res. 2010;49:183–192. doi: 10.1111/j.1600-079X.2010.00785.x. PubMed DOI
Pigazzi M., Manara E., Baron E., Basso G. MiR-34b Targets Cyclic AMP-Responsive Element Binding Protein in Acute Myeloid Leukemia. Cancer Res. 2009;69:2471–2478. doi: 10.1158/0008-5472.CAN-08-3404. PubMed DOI
Lin L., Yao Z., Bhuvaneshwar K., Gusev Y., Kallakury B., Yang S., Shetty K., He A.R. Transcriptional Regulation of STAT3 by SPTBN1 and SMAD3 in HCC through CAMP-Response Element-Binding Proteins ATF3 and CREB2. Carcinogenesis. 2014;35:2393–2403. doi: 10.1093/carcin/bgu163. PubMed DOI
Wheaton K.L., Hansen K.F., Aten S., Sullivan K.A., Yoon H., Hoyt K.R., Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J. Biol. Rhythms. 2018;33:497–514. doi: 10.1177/0748730418791713. PubMed DOI PMC
Yu H., Pardoll D., Jove R. STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734. PubMed DOI PMC
Baler R., Covington S., Klein D.C. The Rat Arylalkylamine N-Acetyltransferase Gene Promoter. CAMP Activation via a CAMP-Responsive Element-CCAAT Complex. J. Biol. Chem. 1997;272:6979–6985. doi: 10.1074/jbc.272.11.6979. PubMed DOI
Carter D.A. Rhythms of Cellular Immediate-Early Gene Expression: More than Just an Early Response. Exp. Physiol. 1997;82:237–244. doi: 10.1113/expphysiol.1997.sp004019. PubMed DOI
Guillaumond F., Becquet D., Bosler O., François-Bellan A.M. Adrenergic Inducibility of AP-1 Binding in the Rat Pineal Gland Depends on Prior Photoperiod. J. Neurochem. 2002;83:157–166. doi: 10.1046/j.1471-4159.2002.01140.x. PubMed DOI
Davies J.S., Klein D.C., Carter D.A. Selective Genomic Targeting by FRA-2/FOSL2 Transcription Factor: Regulation of the Rgs4 Gene Is Mediated by a Variant Activator Protein 1 (AP-1) Promoter Sequence/CREB-Binding Protein (CBP) Mechanism. J. Biol. Chem. 2011;286:15227–15239. doi: 10.1074/jbc.M110.201996. PubMed DOI PMC
Hulboy D.L., Matrisian L.M., Crawford H.C. Loss of JunB Activity Enhances Stromelysin 1 Expression in a Model of the Epithelial-to-Mesenchymal Transition of Mouse Skin Tumors. Mol. Cell. Biol. 2001;21:5478–5487. doi: 10.1128/MCB.21.16.5478-5487.2001. PubMed DOI PMC
Chik C.L., Wloka M.T., Price D.M., Ho A.K. The Role of Repressor Proteins in the Adrenergic Induction of Type II Iodothyronine Deiodinase in Rat Pinealocytes. Endocrinology. 2007;148:3523–3531. doi: 10.1210/en.2007-0166. PubMed DOI
Coffer P., Lutticken C., van Puijenbroek A., Klop-de Jonge M., Horn F., Kruijer W. Transcriptional Regulation of the JunB Promoter: Analysis of STAT-Mediated Signal Transduction. Oncogene. 1995;10:985–994. PubMed
Higashi N., Kunimoto H., Kaneko S., Sasaki T., Ishii M., Kojima H., Nakajima K. Cytoplasmic C-Fos Induced by the YXXQ-Derived STAT3 Signal Requires the Co-Operative MEK/ERK Signal for Its Nuclear Translocation. Genes Cells. 2004;9:233–242. doi: 10.1111/j.1356-9597.2004.00715.x. PubMed DOI
Shi M., Liu D., Duan H., Han C., Wei B., Qian L., Chen C., Guo L., Hu M., Yu M., et al. Catecholamine Up-Regulates MMP-7 Expression by Activating AP-1 and STAT3 in Gastric Cancer. Mol. Cancer. 2010;9:269. doi: 10.1186/1476-4598-9-269. PubMed DOI PMC
Schuringa J.J., Timmer H., Luttickhuizen D., Vellenga E., Kruijer W. C-Jun and c-Fos Cooperate with STAT3 in IL-6-Induced Transactivation of the IL-6 Respone Element (IRE) Cytokine. 2001;14:78–87. doi: 10.1006/cyto.2001.0856. PubMed DOI
Carpenter R.L., Lo H.-W. STAT3 Target Genes Relevant to Human Cancers. Cancers. 2014;6:897–925. doi: 10.3390/cancers6020897. PubMed DOI PMC
Stehle J.H., Foulkes N.S., Molina C.A., Simonneaux V., Pévet P., Sassone-Corsi P. Adrenergic Signals Direct Rhythmic Expression of Transcriptional Repressor CREM in the Pineal Gland. Nature. 1993;365:314–320. doi: 10.1038/365314a0. PubMed DOI
Foulkes N.S., Borjigin J., Snyder S.H., Sassone-Corsi P. Transcriptional Control of Circadian Hormone Synthesis via the CREM Feedback Loop. Proc. Natl. Acad. Sci. USA. 1996;93:14140–14145. doi: 10.1073/pnas.93.24.14140. PubMed DOI PMC
Lund I.V., Hu Y., Raol Y.H., Benham R.S., Faris R., Russek S.J., Brooks-Kayal A.R. BDNF Selectively Regulates GABAA Receptor Transcription by Activation of the JAK/STAT Pathway. Sci. Signal. 2008;1:ra9. doi: 10.1126/scisignal.1162396. PubMed DOI PMC
Pfeffer M., Maronde E., Molina C.A., Korf H.W., Stehle J.H. Inducible Cyclic AMP Early Repressor Protein in Rat Pinealocytes: A Highly Sensitive Natural Reporter for Regulated Gene Transcription. Mol. Pharmacol. 1999;56:279–289. doi: 10.1124/mol.56.2.279. PubMed DOI
Yu J., Yuan X., Liu Y., Zhang K., Wang J., Zhang H., Liu F. Delayed Administration of WP1066, an STAT3 Inhibitor, Ameliorates Radiation-Induced Lung Injury in Mice. Lung. 2016;194:67–74. doi: 10.1007/s00408-015-9821-8. PubMed DOI
Liu Q., Xie W., Wang Y., Chen S., Han J., Wang L., Gui P., Wu Q. JAK2/STAT1-Mediated HMGB1 Translocation Increases Inflammation and Cell Death in a Ventilator-Induced Lung Injury Model. Lab. Investig. 2019;99:1810–1821. doi: 10.1038/s41374-019-0308-8. PubMed DOI
Huang H., Constante M., Layoun A., Santos M.M. Contribution of STAT3 and SMAD4 Pathways to the Regulation of Hepcidin by Opposing Stimuli. Blood. 2009;113:3593–3599. doi: 10.1182/blood-2008-08-173641. PubMed DOI PMC
Burton M.D., Sparkman N.L., Johnson R.W. Inhibition of Interleukin-6 Trans-Signaling in the Brain Facilitates Recovery from Lipopolysaccharide-Induced Sickness Behavior. J. Neuroinflamm. 2011;8:54. doi: 10.1186/1742-2094-8-54. PubMed DOI PMC
Han J.H., Lee Y.S., Im J.H., Ham Y.W., Lee H.P., Han S.B., Hong J.T. Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway. Mar. Drugs. 2019;17:123. doi: 10.3390/md17020123. PubMed DOI PMC
Herman A.P., Bochenek J., Skipor J., Król K., Krawczyńska A., Antushevich H., Pawlina B., Marciniak E., Tomaszewska-Zaremba D. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study. BioMed Res. Int. 2015;2015:e526464. doi: 10.1155/2015/526464. PubMed DOI PMC
Fernandes P.A.C.M., Cecon E., Markus R.P., Ferreira Z.S. Effect of TNF-Alpha on the Melatonin Synthetic Pathway in the Rat Pineal Gland: Basis for a “feedback” of the Immune Response on Circadian Timing. J. Pineal Res. 2006;41:344–350. doi: 10.1111/j.1600-079X.2006.00373.x. PubMed DOI
Barbosa Lima L.E., Muxel S.M., Kinker G.S., Carvalho-Sousa C.E., da Silveira Cruz-Machado S., Markus R.P., Fernandes P.A.C.M. STAT1-NFκB Crosstalk Triggered by Interferon Gamma Regulates Noradrenaline-Induced Pineal Hormonal Production. J. Pineal Res. 2019;67:e12599. doi: 10.1111/jpi.12599. PubMed DOI
Herman A.P., Bochenek J., Król K., Krawczyńska A., Antushevich H., Pawlina B., Herman A., Romanowicz K., Tomaszewska-Zaremba D. Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin. Mediat. Inflamm. 2016;2016:2589483. doi: 10.1155/2016/2589483. PubMed DOI PMC
Lv S., Li J., Qiu X., Li W., Zhang C., Zhang Z.-N., Luan B. A Negative Feedback Loop of ICER and NF-ΚB Regulates TLR Signaling in Innate Immune Responses. Cell Death Differ. 2017;24:492–499. doi: 10.1038/cdd.2016.148. PubMed DOI PMC
Takamiya A., Takeda M., Yoshida A., Kiyama H. Inflammation Induces Serine Protease Inhibitor 3 Expression in the Rat Pineal Gland. Neuroscience. 2002;113:387–394. doi: 10.1016/S0306-4522(02)00198-7. PubMed DOI
Nicolas C.S., Peineau S., Amici M., Csaba Z., Fafouri A., Javalet C., Collett V.J., Hildebrandt L., Seaton G., Choi S.-L., et al. The Jak/STAT Pathway Is Involved in Synaptic Plasticity. Neuron. 2012;73:374–390. doi: 10.1016/j.neuron.2011.11.024. PubMed DOI PMC
Tang Z., Xu T., Li Y., Fei W., Yang G., Hong Y. Inhibition of CRY2 by STAT3/MiRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. Mol. Ther. Nucleic Acids. 2020;19:865–876. doi: 10.1016/j.omtn.2019.12.020. PubMed DOI PMC
Luo W., Sehgal A. Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit. Cell. 2012;148:765–779. doi: 10.1016/j.cell.2011.12.024. PubMed DOI PMC
Lee H., Jeong A.J., Ye S.-K. Highlighted STAT3 as a Potential Drug Target for Cancer Therapy. BMB Rep. 2019;52:415–423. doi: 10.5483/BMBRep.2019.52.7.152. PubMed DOI PMC
Zou S., Tong Q., Liu B., Huang W., Tian Y., Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020;19:145. doi: 10.1186/s12943-020-01258-7. PubMed DOI PMC
Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 Signalling Axis in Cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC