The day/night difference in the circadian clock's response to acute lipopolysaccharide and the rhythmic Stat3 expression in the rat suprachiasmatic nucleus

. 2018 ; 13 (9) : e0199405. [epub] 20180928

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30265676

The circadian clock in the suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behaviour and is an important part of the mammalian homeostatic system. Previously, we have shown that systemic inflammatory stimulation with lipopolysaccharide (LPS) induced the daytime-dependent phosphorylation of STAT3 in the SCN. Here, we demonstrate the LPS-induced Stat3 mRNA expression in the SCN and show also the circadian rhythm in Stat3 expression in the SCN, with high levels during the day. Moreover, we examined the effects of LPS (1mg/kg), applied either during the day or the night, on the rhythm in locomotor activity of male Wistar rats. We observed that recovery of normal locomotor activity patterns took longer when the animals were injected during the night. The clock genes Per1, Per2 and Nr1d1, and phosphorylation of kinases ERK1/2 and GSK3β are sensitive to external cues and function as the molecular entry for external signals into the circadian clockwork. We also studied the immediate changes in these clock genes expressions and the phosphorylation of ERK1/2 and GSK3β in the suprachiasmatic nucleus in response to daytime or night-time inflammatory stimulation. We revealed mild and transient changes with respect to the controls. Our data stress the role of STAT3 in the circadian clock response to the LPS and provide further evidence of the interaction between the circadian clock and immune system.

Zobrazit více v PubMed

Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012;74: 246–260. 10.1016/j.neuron.2012.04.006 PubMed DOI

Morin LP. SCN organization reconsidered. J Biol Rhythms 2007;22: 3–13. 10.1177/0748730406296749 PubMed DOI

Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem. 2005;280: 29397–29402. 10.1074/jbc.M503526200 PubMed DOI

Kurabayashi N, Hirota T, Harada Y, Sakai M, Fukada Y. Phosphorylation of mCRY2 at Ser557 in the hypothalamic suprachiasmatic nucleus of the mouse. Chronobiol Int. 2006;23: 129–134. 10.1080/07420520500464478 PubMed DOI

Sanada K, Harada Y, Sakai M, Todo T, Fukada Y. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells. 2004;9: 697–708. 10.1111/j.1356-9597.2004.00758.x PubMed DOI

Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem. 2002;277: 267–271. 10.1074/jbc.M107850200 PubMed DOI

Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011;585: 1393–1399. 10.1016/j.febslet.2011.02.038 PubMed DOI

Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1998;1: 693–700. 10.1038/3695 PubMed DOI

Dziema H, Oatis B, Butcher GQ, Yates R, Hoyt KR, Obrietan K. The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur J Neurosci. 2003;17: 1617–1627. PubMed

Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian N. The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep. 2017;7: 10892 10.1038/s41598-017-11297-8 PubMed DOI PMC

Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A. 2012;109: 582–587. 10.1073/pnas.1106750109 PubMed DOI PMC

Guerrero-Vargas NN, Salgado-Delgado R, Basualdo Mdel C, García J, Guzmán-Ruiz M, Carrero JC, et al. Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide. J Neuroimmunol. 2014;273: 22–30. 10.1016/j.jneuroim.2014.05.012 PubMed DOI

Kalsbeek A, Liu J, Lei J, Timmermans L, Foppen E, Cailotto C, et al. Differential involvement of the suprachiasmatic nucleus in lipopolysaccharide-induced plasma glucose and corticosterone responses. Chronobiol Int. 2012;29: 835–849. 10.3109/07420528.2012.699123 PubMed DOI

Wachulec M, Li H, Tanaka H, Peloso E, Satinoff E. Suprachiasmatic nuclei lesions do not eliminate homeostatic thermoregulatory responses in rats. J Biol Rhythms. 1997;12: 226–234. 10.1177/074873049701200304 PubMed DOI

Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185: 5796–5805. 10.4049/jimmunol.1001026 PubMed DOI PMC

Marpegán L, Bekinschtein TA, Costas MA, Golombek DA. Circadian responses to endotoxin treatment in mice. J Neuroimmunol. 2005;160: 102–109. 10.1016/j.jneuroim.2004.11.003 PubMed DOI

Sadki A, Bentivoglio M, Kristensson K, Nygård M. Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol Aging. 2007;28: 296–305. 10.1016/j.neurobiolaging.2005.12.007 PubMed DOI

Beynon AL, Coogan AN. Diurnal, age, and immune regulation of interleukin-1β and interleukin-1 type 1 receptor in the mouse suprachiasmatic nucleus. Chronobiol Int. 2010;27: 1546–1563. 10.3109/07420528.2010.501927 PubMed DOI

Paladino N, Leone MJ, Plano SA, Golombek DA. Paying the circadian toll: the circadian response to LPS injection is dependent on the Toll-like receptor 4. J Neuroimmunol. 2010;225: 62–67. 10.1016/j.jneuroim.2010.04.015 PubMed DOI

Paladino N, Mul Fedele ML, Duhart JM, Marpegan L, Golombek DA. Modulation of mammalian circadian rhythms by tumor necrosis factor-α. Chronobiol Int. 2014;31: 668–769. PubMed

Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, et al. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. J Immunol. 2013;191: 4656–4664. 10.4049/jimmunol.1300450 PubMed DOI PMC

Duhart JM, Brocardo L, Mul Fedele ML, Guglielmotti A, Golombek DA. CCL2 mediates the circadian response to low dose endotoxin. Neuropharmacology. 2016;108: 373–381. 10.1016/j.neuropharm.2016.05.005 PubMed DOI

Rummel C. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication. Brain Behav Immun. 2016;54: 1–14. 10.1016/j.bbi.2015.09.003 PubMed DOI

Moravcová S, Červená K, Pačesová D, Bendová Z. Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. J Neurosci Res. 2016;94: 99–108. 10.1002/jnr.23673 PubMed DOI

Pačesová D, Volfová B, Červená K, Hejnová L, Novotný J, Bendová Z. Acute morphine affects the rat circadian clock via rhythms of phosphorylated ERK1/2 and GSK3β kinases and Per1 expression in the rat suprachiasmatic nucleus. Br J Pharmacol. 2015;172: 3638–3649. 10.1111/bph.13152 PubMed DOI PMC

Beurel E, Jope RS. Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem. 2008;283: 21934–21944. 10.1074/jbc.M802481200 PubMed DOI PMC

Beurel E, Jope RS. Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation. 2009;6: 9 10.1186/1742-2094-6-9 PubMed DOI PMC

Soták M, Polidarová L, Musílková J, Hock M, Sumová A, Pácha J. Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2011;301: G1066–G1074. 10.1152/ajpgi.00256.2011 PubMed DOI

Hahnová K., Pačesová D., Volfová B., Červená K., Kašparová D., Žurmanová J., et al. Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiol Int. 2016;33: 141–150. 10.3109/07420528.2015.1120741 PubMed DOI

Bendová Z, Sládek M, Svobodová I. The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochem Int. 2012;61: 43–47. 10.1016/j.neuint.2012.04.016 PubMed DOI

Matějů K, Bendová Z, El-Hennamy R, Sládek M, Sosniyenko S, Sumová A. Development of the light sensitivity of the clock genes Period1 and Period2, and immediate-early gene c-fos within the rat suprachiasmatic nucleus. Eur J Neurosci. 2009;29: 490–501. 10.1111/j.1460-9568.2009.06609.x PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25: 402–408. 10.1006/meth.2001.1262 PubMed DOI

Leone MJ, Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J Neurosci Res. 2006;84: 1521–1527. 10.1002/jnr.21042 PubMed DOI

Leone MJ, Marpegan L, Duhart JM, Golombek DA. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm. Chronobiol Int. 2012;29: 715–723. 10.3109/07420528.2012.682681 PubMed DOI

Okada K, Yano M, Doki Y, Azama T, Iwanaga H, Miki H, et al. Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res. 2008;145: 5–12. 10.1016/j.jss.2007.01.010 PubMed DOI

Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997;9: 1055–1064. PubMed

Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997;19: 1261–1269. PubMed

Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988; 12: 123–137. PubMed

Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14: 736–746. 10.1038/nrc3818 PubMed DOI

Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience. 2016;330: 205–218. 10.1016/j.neuroscience.2016.05.043 PubMed DOI

Bhattacharya A, Vavra V, Svobodova I, Bendova Z, Vereb G, Zemkova H. Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J Neurosci. 2013;33: 8035–8044. 10.1523/JNEUROSCI.4682-12.2013 PubMed DOI PMC

Svobodova I, Bhattaracharya A, Ivetic M, Bendova Z, Zemkova H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front Pharmacol. 2018; 6:192. PubMed PMC

Sarafian TA, Montes C, Imura T, Qi J, Coppola G, Geschwind DH, et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One. 2010;5: e9532 10.1371/journal.pone.0009532 PubMed DOI PMC

Damm J, Harden LM, Gerstberger R, Roth J, Rummel C. The putative JAK-STAT inhibitor AG490 exacerbates LPS-fever, reduces sickness behaviour, and alters the expression of pro- and anti-inflammatory genes in the rat brain. Neuropharmacology. 2013;71: 98–111. 10.1016/j.neuropharm.2013.03.014 PubMed DOI

Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M, et al. Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci. 1999;19: 1115–1121. PubMed PMC

Maywood ES, Mrosovsky N, Field MD, Hastings MH. Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A 1999;96: 15211–15216. PubMed PMC

Horikawa K, Yokota S, Fuji K, Akiyama M, Moriya T, Okamura H. et al. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci. 2000;20: 5867–5873. PubMed PMC

Fukuhara C, Brewer JM, Dirden JC, Bittman EL, Tosini G, Harrington ME. Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett. 2001;314: 119–122. PubMed

Takahashi S, Yokota S, Hara R, Kobayashi T, Akiyama M, Moriya T, et al. Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse. Endocrinology. 2001;142: 4910–4917. 10.1210/endo.142.11.8487 PubMed DOI

Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, et al. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci U S A. 2007;104: 12843–12848. 10.1073/pnas.0701466104 PubMed DOI PMC

Petrzilka S, Taraborrelli C, Cavadini G, Fontana A, Birchler T. Clock gene modulation by TNF-alpha depends on calcium and p38 MAP kinase signaling. J Biol Rhythms. 2009;24: 283–294. 10.1177/0748730409336579 PubMed DOI

Sato S, Sakura T, Ogasawara J, Shirato K, Ishibashi Y, Oh-ishi S, et al. Direct and indirect suppression of interleukin-6 gene expression in murine macrophages by nuclear orphan receptor REV-ERBα. Scientific World Journal. 2014. a;685854 10.1155/2014/685854 PubMed DOI PMC

Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, et al. A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol. 2014. b;192: 407–417. 10.4049/jimmunol.1301982 PubMed DOI

Rawadi G, Ramez V, Lemercier B, Roman-Roman S. Activation of mitogen-activated protein kinase pathways by Mycoplasma fermentans membrane lipoproteins in murine macrophages: involvement in cytokine synthesis. J Immunol. 1998;160: 1330–1339. PubMed

Chen CC, Wang JK. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol. 1999;55: 481–488. PubMed

Daigang L, Jining Q, Jinlai L, Pengfei W, Chuan S, Liangku H, et al. LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling. Exp Cell Res. 2016;341: 54–60. 10.1016/j.yexcr.2016.01.009 PubMed DOI

Singru PS, Sánchez E, Acharya R, Fekete C, Lechan R.M. Mitogen-activated protein kinase contributes to lipopolysaccharide-induced activation of corticotropin-releasing hormone synthesizing neurons in the hypothalamic paraventricular nucleus. Endocrinology. 2008;149: 2283–2292. 10.1210/en.2007-1478 PubMed DOI PMC

Červená K, Pačesová D, Spišská V, Bendová Z. Delayed Effect of the Light Pulse on Phosphorylated ERK1/2 and GSK3β Kinases in the Ventrolateral Suprachiasmatic Nucleus of Rat. J Mol Neurosci. 2015;56: 371–376. 10.1007/s12031-015-0563-0 PubMed DOI

Green HF, Nolan YM. GSK-3 mediates the release of IL-1β, TNF-α and IL-10 from cortical glia. Neurochem Int. 2012;61: 666–671. 10.1016/j.neuint.2012.07.003 PubMed DOI

Osland TM, Fernø J, Håvik B, Heuch I, Ruoff P, Lærum OD et al. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells. J Psychopharmacol. 2011;25: 924–33. 10.1177/0269881110379508 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...