Acute morphine affects the rat circadian clock via rhythms of phosphorylated ERK1/2 and GSK3β kinases and Per1 expression in the rat suprachiasmatic nucleus
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25828914
PubMed Central
PMC4507165
DOI
10.1111/bph.13152
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní hodiny účinky léků MeSH
- cirkadiánní proteiny Period metabolismus MeSH
- cirkadiánní rytmus účinky léků MeSH
- fosforylace účinky léků MeSH
- kinasa 3 glykogensynthasy metabolismus MeSH
- kinasa glykogensynthasy 3beta MeSH
- krysa rodu Rattus MeSH
- mitogenem aktivovaná proteinkinasa 1 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- morfin farmakologie MeSH
- nucleus suprachiasmaticus účinky léků metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cirkadiánní proteiny Period MeSH
- Gsk3b protein, rat MeSH Prohlížeč
- kinasa 3 glykogensynthasy MeSH
- kinasa glykogensynthasy 3beta MeSH
- mitogenem aktivovaná proteinkinasa 1 MeSH
- mitogenem aktivovaná proteinkinasa 3 MeSH
- mitogenem aktivované proteinkinasy MeSH
- morfin MeSH
- Per1 protein, rat MeSH Prohlížeč
BACKGROUND AND PURPOSE: Opioids affect the circadian clock and may change the timing of many physiological processes. This study was undertaken to investigate the daily changes in sensitivity of the circadian pacemaker to an analgesic dose of morphine, and to uncover a possible interplay between circadian and opioid signalling. EXPERIMENTAL APPROACH: A time-dependent effect of morphine (1 mg·kg(-1) , i.p.) applied either during the day or during the early night was followed, and the levels of phosphorylated ERK1/2, GSK3β, c-Fos and Per genes were assessed by immunohistochemistry and in situ hybridization. The effect of morphine pretreatment on light-induced pERK and c-Fos was examined, and day/night difference in activity of opioid receptors was evaluated by [(35) S]-GTPγS binding assay. KEY RESULTS: Morphine stimulated a rise in pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus (SCN) when applied during the day but significantly reduced both kinases when applied during the night. Morphine at night transiently induced Period1 but not Period2 in the SCN and did not attenuate the light-induced level of pERK1/2 and c-Fos in the SCN. The activity of all three principal opioid receptors was high during the day but decreased significantly at night, except for the δ receptor. Finally, we demonstrated daily profiles of pERK1/2 and pGSK3β levels in the rat ventrolateral and dorsomedial SCN. CONCLUSIONS AND IMPLICATIONS: Our data suggest that the phase-shifting effect of opioids may be mediated via post-translational modification of clock proteins by means of activated ERK1/2 and GSK3β.
Zobrazit více v PubMed
Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M, et al. Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci. 1999;19:1115–1121. PubMed PMC
Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 1997;9:1055–1064. PubMed
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, et al. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol. 2013a;170:1459–1581. PubMed PMC
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, et al. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol. 2013b;170:1652–1675. PubMed PMC
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, et al. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol. 2013c;170:1797–1867. PubMed PMC
Antle MC, Kriegsfeld LJ, Silver R. Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. J Neurosci. 2005a;25:2447–2454. PubMed PMC
Antle MC, LeSauter J, Silver R. Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Brain Res Dev Brain Res. 2005b;157:8–18. PubMed PMC
Antle MC, Tse F, Koke SJ, Sterniczuk R, Hagel K. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway. Eur J Neurosci. 2008;28:2511–2518. PubMed
Berhow MT, Hiroi N, Nestler EJ. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. 1996;16:4707–4715. PubMed PMC
Boom M, Grefkens J, van Dorp E, Olofsen E, Lourenssen G, Aarts L, et al. Opioid chronopharmacology: influence of timing of infusion on fentanyl's analgesic efficacy in healthy human volunteers. J Pain Res. 2010;21:183–190. PubMed PMC
Borgkvist A, Usiello A, Greengard P, Fisone G. Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology. 2007;32:1995–2003. PubMed
Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol. 2013;217:3–27. PubMed PMC
Byku M, Gannon RL. SNC 80, a delta-opioid agonist, elicits phase advances in hamster circadian activity rhythms. Neuroreport. 2000a;11:1449–1452. PubMed
Byku M, Gannon RL. Opioid induced non-photic phase shifts of hamster circadian activity rhythms. Brain Res. 2000b;873:189–196. PubMed
Byku M, Legutko R, Gannon RL. Distribution of delta opioid receptor immunoreactivity in the hamster suprachiasmatic nucleus and intergeniculate leaflet. Brain Res. 2000;857:1–7. PubMed
Chen JC, Smith ER, Cahill M, Cohen R, Fishman JB. The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sci. 1993;52:389–396. PubMed
Cutler DJ, Mundey MK, Mason R. Electrophysiological effects of opioid receptor activation on Syrian hamster suprachiasmatic nucleus neurones in vitro. Brain Res Bull. 1999;50:119–125. PubMed
Dehpour AR, Farsam H, Azizabadi-Farahani M. The effect of lithium on morphine-induced analgesia in mice. Gen Pharmacol. 1994;25:1635–1641. PubMed
Desjardins GC, Brawer JR, Beaudet A. Distribution of mu, delta, and kappa opioid receptors in the hypothalamus of the rat. Brain Res. 1990;536:114–123. PubMed
Dimsdale JE, Norman D, DeJardin D, Wallace MS. The effect of opioids on sleep architecture. J Clin Sleep Med. 2007;3:33–36. PubMed
Ding YQ, Kaneko T, Nomura S, Mizuno N. Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol. 1996;367:375–402. PubMed
Dziema H, Oatis B, Butcher GQ, Yates R, Hoyt KR, Obrietan K. The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur J Neurosci. 2003;17:1617–1627. PubMed
Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, Keith D, Jr, et al. Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci. 2003;23:8360–8369. PubMed PMC
Fukuhara C, Brewer JM, Dirden JC, Bittman EL, Tosini G, Harrington ME. Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett. 2001;314:119–122. PubMed
Guillaumond F, Becquet D, Blanchard MP, Attia J, Moreno M, Bosler O, et al. Nocturnal expression of phosphorylated-ERK1/2 in gastrin-releasing peptide neurons of the rat suprachiasmatic nucleus. J Neurochem. 2007;101:1224–1235. PubMed
Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem. 2005;280:31714–31721. PubMed
Horikawa K, Yokota S, Fuji K, Akiyama M, Moriya T, Okamura H, et al. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci. 2000;20:5867–5873. PubMed PMC
Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem. 2005;280:29397–29402. PubMed
Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol. 2010;22:362–372. PubMed
Karatsoreos IN, Yan L, LeSauter J, Silver R. Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci. 2004;24:68–75. PubMed PMC
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–1579. PubMed PMC
Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271–R277. PubMed
Ko HW, Kim EY, Chiu J, Vanselow JT, Kramer A, Edery I. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J Neurosci. 2010;30:12664–12675. PubMed PMC
Lambert CM, Machida KK, Smale L, Nunez AA, Weaver DR. Analysis of the prokineticin 2 system in a diurnal rodent, the unstriped Nile grass rat (Arvicanthis niloticus. J Biol Rhythms. 2005;20:206–218. PubMed
Lavoie J, Hébert M, Beaulieu JM. Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice. Behav Brain Res. 2013;253:262–265. PubMed
Li LY, Chang KJ. The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol Pharmacol. 1996;50:599–602. PubMed
Liu J, Nickolenko J, Sharp FR. Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 1994;91:8537–8541. PubMed PMC
Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, et al. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol. 1994;350:412–438. PubMed
Marchant EG, Mistlberger RE. Morphine phase-shifts circadian rhythms in mice: role of behavioural activation. Neuroreport. 1995;7:209–712. PubMed
Maywood ES, Mrosovsky N, Field MD, Hastings MH. Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A. 1999;96:15211–15216. PubMed PMC
McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS ONE. 2012;7:e32091. PubMed PMC
McGrath J, Drummond G, McLachlan E, Kilkenny C, Wainwright C. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1573–1576. PubMed PMC
Meijer JH, Ruijs AC, Albus H, van de Geest B, Duindam H, Zwinderman AH, et al. Fentanyl, a upsilon-opioid receptor agonist, phase shifts the hamster circadian pacemaker. Brain Res. 2000;868:135–140. PubMed
Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, Borea PA. Morphine mediates a proinflammatory phenotype via μ-opioid receptor-PKCε-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol. 2013;86:487–496. PubMed
Morin LP. SCN organization reconsidered. J Biol Rhythms. 2007;22:3–13. PubMed
Naber D, Cohen RM, Pickar D, Kalin NH, Davis G, Pert CB, et al. Episodic secretion of opioid activity in human plasma and monkey CSF: evidence for a diurnal rhythm. Life Sci. 1981;28:931–935. PubMed
Nakaya M, Sanada K, Fukada Y. Spatial and temporal regulation of mitogen-activated protein kinase phosphorylation in the mouse suprachiasmatic nucleus. Biochem Biophys Res Commun. 2003;305:494–501. PubMed
Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci. 1998;1:693–700. PubMed
Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ. Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci. 1995;15:1285–1297. PubMed PMC
Osland TM, Fernø J, Håvik B, Heuch I, Ruoff P, Lærum OD, et al. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells. J Psychopharmacol. 2011;25:924–933. PubMed
Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SP, Buneman OP, et al. NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucl Acids Res. 2014;42:D1098–D1106. (Database Issue): PubMed PMC
Raffa RB, Martinez RP, Renzi MJ, Codd EE. LiCl uncouples signal transduction in morphine-induced supraspinal antinociception in mice. Gen Pharmacol. 1995;26:317–320. PubMed
Raymond RC, Warren M, Morris RW, Leikin JB. Periodicity of presentations of drugs of abuse and overdose in an emergency department. J Toxicol Clin Toxicol. 1992;30:467–478. PubMed
Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011;585:1393–1399. PubMed
Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE. 2010;5:e8561. PubMed PMC
Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem. 2002;277:267–271. PubMed
Sanada K, Harada Y, Sakai M, Todo T, Fukada Y. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells. 2004;9:697–708. PubMed
Shaw IR, Lavigne G, Mayer P, Choinière M. Acute intravenous administration of morphine perturbs sleep architecture in healthy pain-free young adults: a preliminary study. Sleep. 2005;28:677–682. PubMed
Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K, Illnerová H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 2004;101:6231–6236. PubMed PMC
Tierno A, Fiore P, Gannon RL. Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms. Brain Res. 2002;937:66–73. PubMed
Trávníčková Z, Sumová A, Peters R, Schwartz WJ, Illnerová H. Photoperiod-dependent correlation between light-induced SCN c-fos expression and resetting of circadian phase. Am J Physiol. 1996;271:R825–R831. PubMed
Vansteensel MJ, Deboer T, Dahan A, Meijer JH. Differential responses of circadian activity onset and offset following GABA-ergic and opioid receptor activation. J Biol Rhythms. 2003;18:297–306. PubMed
Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, et al. The opioid fentanyl affects light input, electrical activity and Per gene expression in the hamster suprachiasmatic nuclei. Eur J Neurosci. 2005;21:2958–2966. PubMed
Wang YJ, Rasakham K, Huang P, Chudnovskaya D, Cowan A, Liu-Chen LY. Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig. J Pharmacol Exp Ther. 2011;339:438–450. PubMed PMC
Yoshida M, Ohdo S, Takane H, Tomiyoshi Y, Matsuo A, Yukawa E, et al. Chronopharmacology of analgesic effect and its tolerance induced by morphine in mice. J Pharmacol Exp Ther. 2003;305:1200–1205. PubMed
Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998;20:1103–1110. PubMed